scholarly journals Weakly nonlinear modelling of a forced turbulent axisymmetric wake

2017 ◽  
Vol 814 ◽  
pp. 570-591 ◽  
Author(s):  
Georgios Rigas ◽  
Aimee S. Morgans ◽  
Jonathan F. Morrison

A theory is presented where the weakly nonlinear analysis of laminar globally unstable flows in the presence of external forcing is extended to the turbulent regime. The analysis is demonstrated and validated using experimental results of an axisymmetric bluff-body wake at high Reynolds numbers, $Re_{D}\sim 1.88\times 10^{5}$, where forcing is applied using a zero-net-mass-flux actuator located at the base of the blunt body. In this study we focus on the response of antisymmetric coherent structures with azimuthal wavenumbers $m=\pm 1$ at a frequency $St_{D}=0.2$, responsible for global vortex shedding. We found experimentally that axisymmetric forcing ($m=0$) couples nonlinearly with the global shedding mode when the flow is forced at twice the shedding frequency, resulting in parametric subharmonic resonance through a triadic interaction between forcing and shedding. We derive simple weakly nonlinear models from the phase-averaged Navier–Stokes equations and show that they capture accurately the observed behaviour for this type of forcing. The unknown model coefficients are obtained experimentally by producing harmonic transients. This approach should be applicable in a variety of turbulent flows to describe the response of global modes to forcing.

2013 ◽  
Vol 721 ◽  
pp. 58-85 ◽  
Author(s):  
Kengo Deguchi ◽  
Philip Hall ◽  
Andrew Walton

AbstractThe recently understood relationship between high-Reynolds-number vortex–wave interaction theory and computationally generated self-sustaining processes provides a possible route to an understanding of some of the underlying structures of fully turbulent flows. Here vortex–wave interaction (VWI) theory is used in the long streamwise wavelength limit to continue the development found at order-one wavelengths by Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). The asymptotic description given reduces the Navier–Stokes equations to the so-called boundary-region equations, for which we find equilibrium states describing the change in the VWI as the wavelength of the wave increases from $O(h)$ to $O(Rh)$, where $R$ is the Reynolds number and $2h$ is the depth of the channel. The reduced equations do not include the streamwise pressure gradient of the perturbation or the effect of streamwise diffusion of the wave–vortex states. The solutions we calculate have an asymptotic error proportional to ${R}^{- 2} $ when compared to the full Navier–Stokes equations. The results found correspond to the minimum drag configuration for VWI states and might therefore be of relevance to the control of turbulent flows. The key feature of the new states discussed here is the thickening of the critical layer structure associated with the wave part of the flow to completely fill the channel, so that the roll part of the flow is driven throughout the flow rather than as in Hall & Sherwin as a stress discontinuity across the critical layer. We identify a critical streamwise wavenumber scaling, which, when approached, causes the flow to localize and take on similarities with computationally generated or experimentally observed turbulent spots. In effect, the identification of this critical wavenumber for a given value of the assumed high Reynolds number fixes a minimum box length necessary for the emergence of localized structures. Whereas nonlinear equilibrium states of the Navier–Stokes equations are thought to form a backbone on which turbulent flows hang, our results suggest that the localized states found here might play a related role for turbulent spots.


1997 ◽  
Vol 119 (4) ◽  
pp. 900-905 ◽  
Author(s):  
X. Zheng ◽  
C. Liao ◽  
C. Liu ◽  
C. H. Sung ◽  
T. T. Huang

In this paper, computational results are presented for three-dimensional high-Reynolds number turbulent flows over a simplified submarine model. The simulation is based on the solution of Reynolds-Averaged Navier-Stokes equations and two-equation turbulence models by using a preconditioned time-stepping approach. A multiblock method, in which the block loop is placed in the inner cycle of a multi-grid algorithm, is used to obtain versatility and efficiency. It was found that the calculated body drag, lift, side force coefficients and moments at various angles of attack or angles of drift are in excellent agreement with experimental data. Fast convergence has been achieved for all the cases with large angles of attack and with modest drift angles.


1993 ◽  
Vol 115 (4) ◽  
pp. 638-645 ◽  
Author(s):  
Hsiao C. Kao

The problem of turbulent flows in two-inlet channels has been studied numerically by solving the Reynolds-averaged Navier-Stokes equations with the k–ε model in a mapped domain. Both the high Reynolds number and the low Reynolds number form were used for this purpose. In general, the former predicts a weaker and smaller recirculation zone than the latter. Comparisons with experimental data, when applicable, were also made. The bulk of the present computations used, however, the high Reynolds number form to correlate different geometries and inflow conditions with the flow properties after turning.


2002 ◽  
Vol 124 (4) ◽  
pp. 848-861 ◽  
Author(s):  
F. F. Grinstein ◽  
C. Fureby

A promising large-eddy simulation (LES) approach is monotonically integrated LES (MILES) which involves solving the Navier-Stokes equations using high-resolution monotone algorithms. In MILES, the subgrid scale (SGS) flow physics is provided by intrinsic, nonlinear, high-frequency filters built into the discretization and implicit SGS models. Mathematical and physical aspects of implicit SGS modeling using nonlinear flux-limiters are addressed using a formalism based on the modified LES equations approach. Detailed properties of the implicit subgrid model are related to the flux limiter, which in turn depends on the specifics of the numerical scheme; we illustrate how the latter properties can directly affect their potential in the MILES framework. Major unresolved issues relevant to LES of complex practical turbulent flows are discussed in this context, including some aspects of boundary condition modeling and overall computational model validation.


2015 ◽  
Vol 782 ◽  
pp. 63-98 ◽  
Author(s):  
Francisco Marques ◽  
Juan M. Lopez

Recent experiments using a rapidly rotating and precessing cylinder have shown that for specific values of the precession rate, aspect ratio and tilt angle, sudden catastrophic transitions to turbulence occur. Even if the precessional forcing is not too strong, there can be intermittent recurrences between a laminar state and small-scale chaotic flow. The inviscid linearized Navier–Stokes equations have inertial-wave solutions called Kelvin eigenmodes. The precession forces the flow to have azimuthal wavenumber $m=1$ (spin-over mode). Depending on the cylinder aspect ratio and on the ratio of the rotating and precessing frequencies, additional Kelvin modes can be in resonance with the spin-over mode. This resonant flow would grow unbounded if not for the presence of viscous and nonlinear effects. In practice, one observes a rapid transition to turbulence, and the precise nature of the transition is not entirely clear. When both the precessional forcing and viscous effects are small, weakly nonlinear models and experimental observations suggest that triadic resonance is at play. Here, we used direct numerical simulations of the full Navier–Stokes equations in a narrow region of parameter space where triadic resonance has been previously predicted from a weakly nonlinear model and observed experimentally. The detailed parametric studies enabled by the numerics reveal the complex dynamics associated with weak precessional forcing, involving symmetry-breaking, hysteresis and heteroclinic cycles between states that are quasiperiodic, with two or three independent frequencies. The detailed analysis of these states leads to associations of physical mechanisms with the various time scales involved.


2003 ◽  
Vol 478 ◽  
pp. 227-235 ◽  
Author(s):  
J. D. GIBBON ◽  
Charles R. DOERING

Dissipation-range intermittency was first observed by Batchelor & Townsend (1949) in high Reynolds number turbulent flows. It typically manifests itself in spatio-temporal binary behaviour which is characterized by long, quiescent periods in the signal which are interrupted by short, active ‘events’ during which there are large excursions away from the average. It is shown that Leray's weak solutions of the three-dimensional incompressible Navier–Stokes equations can have this binary character in time. An estimate is given for the widths of the short, active time intervals, which decreases with the Reynolds number. In these ‘bad’ intervals singularities are still possible. However, the average width of a ‘good’ interval, where no singularities are possible, increases with the Reynolds number relative to the average width of a bad interval.


2007 ◽  
Vol 589 ◽  
pp. 57-81 ◽  
Author(s):  
G. GULITSKI ◽  
M. KHOLMYANSKY ◽  
W. KINZELBACH ◽  
B. LÜTHI ◽  
A. TSINOBER ◽  
...  

This is a report on a field experiment in an atmospheric surface layer at heights between 0.8 and 10m with the Taylor micro-scale Reynolds number in the range Reλ = 1.6−6.6 ×103. Explicit information is obtained on the full set of velocity and temperature derivatives both spatial and temporal, i.e. no use of Taylor hypothesis is made. The report consists of three parts. Part 1 is devoted to the description of facilities, methods and some general results. Certain results are similar to those reported before and give us confidence in both old and new data, since this is the first repetition of this kind of experiment at better data quality. Other results were not obtained before, the typical example being the so-called tear-drop R-Q plot and several others. Part 2 concerns accelerations and related matters. Part 3 is devoted to issues concerning temperature, with the emphasis on joint statistics of temperature and velocity derivatives. The results obtained in this work are similar to those obtained in experiments in laboratory turbulent grid flow and in direct numerical simulations of Navier–Stokes equations at much smaller Reynolds numbers Reλ ~ 102, and this similarity is not only qualitative, but to a large extent quantitative. This is true of such basic processes as enstrophy and strain production, geometrical statistics, the role of concentrated vorticity and strain, reduction of nonlinearity and non-local effects. The present experiments went far beyond the previous ones in two main respects. (i) All the data were obtained without invoking the Taylor hypothesis, and therefore a variety of results on fluid particle accelerations became possible. (ii) Simultaneous measurements of temperature and its gradients with the emphasis on joint statistics of temperature and velocity derivatives. These are reported in Parts 2 and 3.


2009 ◽  
Vol 62 (4) ◽  
Author(s):  
Giancarlo Alfonsi

The approach of Reynolds-averaged Navier–Stokes equations (RANS) for the modeling of turbulent flows is reviewed. The subject is mainly considered in the limit of incompressible flows with constant properties. After the introduction of the concept of Reynolds decomposition and averaging, different classes of RANS turbulence models are presented, and, in particular, zero-equation models, one-equation models (besides a half-equation model), two-equation models (with reference to the tensor representation used for a model, both linear and nonlinear models are considered), stress-equation models (with reference to the pressure-strain correlation, both linear and nonlinear models are considered) and algebraic-stress models. For each of the abovementioned class of models, the most widely-used modeling techniques and closures are reported. The unsteady RANS approach is also discussed and a section is devoted to hybrid RANS/large methods.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


Sign in / Sign up

Export Citation Format

Share Document