Numerical simulation of flow past two circular cylinders in cruciform arrangement

2018 ◽  
Vol 848 ◽  
pp. 1013-1039 ◽  
Author(s):  
Ming Zhao ◽  
Lin Lu

Flow past two circular cylinders in cruciform arrangement is simulated by direct numerical simulations for Reynolds numbers ranging from 100 to 500. The study is aimed at investigating the local flow pattern near the gap between the two cylinders, the global vortex shedding flow in the wake of the cylinders and their effects on the force coefficients of the two cylinders. The three identified local flow patterns near the gap: trail vortex (TV), necklace vortex (NV) and vortex shedding in the gap (SG) agree with those found by flow visualization in experimental studies. As for the global wake flow, two modes of vortex shedding are identified: K mode with inclined wake vortices and P mode where the wake vortices are parallel to the cylinders. The K mode occurs when the gap is slightly greater than the boundary gap between the NV and SG. It also coexists with the SG gap flow pattern if the Reynolds number is very small ($Re=100$). The flow pattern affects the force coefficient. The K mode increases the mean drag coefficient and the standard deviation of the lift coefficient at the centre of the upstream cylinder because the wake vortices converge towards the centre. The mean drag coefficient and standard deviation of the lift coefficient of the downstream cylinder decreases because of the shedding effect from the upstream cylinder.

Author(s):  
Ming-ming Liu

Viscous flow past two circular cylinders in tandem arrangement is numerically investigated at a typical Reynolds number of 200 which is based on the diameter of the downstream cylinder. The non-dimensional diameter of the downstream cylinder D is fixed to be 1.0, while the non-dimensional diameter of the upstream cylinder d varies from 0.1 to 1.0 with an interval of 0.1. Moreover, the minimal non-dimensional distance between the two cylinders changes from 0.1 to 4.0. The numerical results show that continuous variation of the mean drag coefficient, the lift coefficient, and the lift frequency is observed with the increase in the gap ratio for d/ D = 0.1 and 0.2. Discontinuities are found for the mean drag coefficient, the lift coefficient, and the lift frequency of the downstream cylinder with the increase in gap ratio for d/ D = 0.9 and 1.0. Multiple lift oscillating frequencies of the downstream cylinder can be detected for d/ D = 0.3–0.8 at special gap ratios. Special attention is paid on d/ D = 0.4, which is a typical example for d/ D = 0.3–0.8. The predominant lift frequency of the downstream cylinder is observed to change from fL-1 to fL-2 as the increase in the gap ratio for d/ D = 0.4, which have not been previously detected. However, the predominant drag frequency of the downstream cylinder is found always to be fD-3 in present investigation scope. Moreover, a conclusion that fD-3 =  fL-1 +  fL-2 can be obtained.


2014 ◽  
Vol 136 (8) ◽  
Author(s):  
J. F. McClean ◽  
D. Sumner

The flow around a surface-mounted finite-height square prism was investigated using a low-speed wind tunnel. The experiments were conducted at a Reynolds number of Re = 7.3 × 104 for prism aspect ratios of AR = 3, 5, 7, 9, and 11 and incidence angles from α = 0 deg to 45 deg. The thickness of the boundary layer on the ground plane relative to the side length was δ/D = 1.5. Measurements of the vortex shedding frequency were made with a single-component hot-wire probe, and measurements of the mean drag and lift forces were obtained with a force balance. For all aspect ratios and incidence angles, the mean drag coefficient and Strouhal number were lower than those of an infinite prism, while the mean lift coefficient was of nearly similar magnitude. As the aspect ratio was increased from AR = 3 to 11, the force coefficients and Strouhal number slowly approached the infinite-square-prism data. The mean drag coefficient and Strouhal number for the finite prism were less sensitive to changes in incidence angle compared to the infinite square prism. The critical incidence angle, corresponding to minimum mean drag coefficient, minimum (most negative) mean lift coefficient, and maximum Strouhal number, shifted to a higher incidence angle compared to the infinite square prism, with values ranging from αcritical = 15 deg to 18 deg; this shift was greatest for the prisms of higher aspect ratio. The behavior of the force coefficients and Strouhal number for the prism of AR = 3 was distinct from the other prisms (with lower values of mean drag coefficient and mean lift coefficient magnitude, and a different Strouhal number trend), suggesting the critical aspect ratio was between AR = 5 and AR = 3 in these experiments. In the wall-normal direction, the power spectra for AR = 11 and 9 tended to have weaker and/or more broad-banded vortex shedding peaks near the ground plane and near the free end at α = 0 deg and 15 deg. For AR = 7 to 3, well-defined vortex shedding peaks were detected along the entire height of the prisms. For AR = 11 and 9, at α = 30 deg and 45 deg, vortex shedding peaks were absent in the power spectra in the upper part of the wake.


Author(s):  
John F. McClean ◽  
David Sumner

The flow around a surface-mounted square prism of finite height was investigated experimentally using a low-speed wind tunnel. Of interest were the effects of aspect ratio and incidence angle on the mean aerodynamic forces and vortex shedding. Compared to the case of the “infinite” (or two-dimensional) square prism, the flow around the finite square prism has not been extensively studied. The experiments were conducted at a Reynolds number of Re = 7.2 × 104 for aspect ratios of AR = 3, 5, 7, 9, and 11 and incidence angles of α = 0°, 15°, 30° and 45°. The thickness of the boundary layer on the ground plane relative to the side length was δ/D = 1.5. Measurements of the vortex shedding frequency were made with a single-component hot-wire probe in the wake, and measurements of the mean drag and lift forces were obtained with a force balance. For all aspect ratios and incidence angles, the Strouhal number and the mean drag coefficient were lower than those of an infinite prism, while the mean lift coefficient was of nearly similar magnitude. As the aspect ratio was increased from AR = 3 to 11, the force coefficients and Strouhal number slowly approached the infinite-square-prism data. The behaviours of the mean drag coefficient and Strouhal number with incidence angle were less sensitive compared to the case of the infinite square prism, although a minimum mean drag coefficient, minimum (most negative) mean lift coefficient, and maximum Strouhal number were found at α = 15°. The reduced sensitivity to incidence angle is attributed to the complex three-dimensional flow over the free end of the prism and the downwash flow that enters the near wake. The behaviour of the force coefficients and Strouhal number for the prism of AR = 3 was distinct from the other prisms (with lower values of drag coefficient and lift coefficient magnitude, and a different Strouhal number trend), suggesting the critical aspect ratio was between AR = 5 and AR = 3 in these experiments. In the wall-normal direction, the power spectra for AR = 11 and 9 tended to have weaker and/or more broad-banded vortex shedding peaks near the ground plane and near the free end at α = 0° and 15°. For AR = 7 to 3, well-defined vortex shedding peaks were detected along the entire height of the prisms. For AR = 11 and 9, at α = 30° and 45°, vortex shedding peaks were absent in the power spectra in the upper part of the wake.


2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Jaswar Koto ◽  
Abdul Khair Junaidi

Vortex-induced vibration is natural phenomena where an object is exposed to moving fluid caused vibration of the object. Vortex-induced vibration occurred due to vortex shedding behind the object. One of the offshore structures that experience this vortex-induced vibration is riser. The riser experience vortex-induced vibration due to vortex shedding caused by external load which is sea current. The effect of this vortex shedding to the riser is fatigue damage. Vortex-induced vibration of riser becomes the main concern in oil and gas industry since there will be a lots of money to be invested for the installation and maintenance of the riser. The previous studies of this vortex-induced vibration have been conducted by experimental method and Computational Fluid Dynamics (CFD) method in order to predict the vortex shedding behaviour behind the riser body for the determination of way to improve the riser design. This thesis represented the analysis of vortex induced vibration of rigid riser in two-dimensional. The analysis is conducted using Computational Fluid Dynamic (CFD) simulations at Reynolds number at 40, 200, 1000, and 1500. The simulations were performed using Spalart-Allmaras turbulent model to solve the transport equation of turbulent viscosity. The simulations results at Reynolds number 40 and 200 is compared with the other studies for the validation of the simulation, then further simulations were conducted at Reynolds number of 1000 and 1500. The coefficient of lift and drag were obtained from the simulations. The comparison of lift and drag coefficient between the simulation results in this study and experiment results from the other studies showed good agreement. Besides that, the in-line vibration and cross-flow vibration at different Reynolds number were also investigated. The drag coefficient obtained from the simulation results remain unchanged as the Reynolds number increased from 200 to 1500. The lift coefficient obtained from the simulations increased as the Reynolds number increased from 40 to 1500.


1971 ◽  
Vol 93 (4) ◽  
pp. 636-642 ◽  
Author(s):  
C. Dalton ◽  
R. A. Helfinstine

The problem of an accelerating potential flow past a group of stationary circular cylinders is considered using the method of images. The problem is formulated so that the number and location of the cylinders is arbitrary so long as there is no overlap between adjacent cylinders. Inertial and lift coefficients are determined for several different cylinder arrangements. The inertial coefficient for a cylinder can vary in either direction from its single-cylinder value of 2.0. The controlling factors on this variation are the relative geometric position of the cylinder within the group and its distance from its neighbors. These same factors determine, as is expected, the lift coefficient values. In two example configurations, there is even a drag-type force generated on an individual cylinder in the potential flow.


Author(s):  
Y. T. Krishne Gowda ◽  
Ravindra Holalu Venkatdas ◽  
Vikram Chowdeswarally Krishnappa

In many mechanical engineering applications, separated flows often appear around any object such as tall buildings, monuments, and towers are permanently exposed to wind. Similarly, piers, bridge pillars, and legs of offshore platforms are continuously subjected to the load produced by maritime or fluvial streams. These bodies usually create a large region of separated flow and a massive unsteady wake region in the downstream. The highly asymmetric and periodic nature of flow in the downstream has attracted the attention of physicists, engineers and CFD practitioners. A lot of research work is carried out for a square cylinder but flow past square cylinders with and without corner modification work is not taken up. This motivated to take up the task of flow past two different sized square cylinders, numerically simulated. A Reynolds number of 100 and 200 is considered for the investigation. The flow is assumed to be two dimensional unsteady and incompressible. The computational methodology is carried out once the problem is defined the first step in solving the problem is to construct a geometry on which the simulation is planned. Once the geometry is constructed, proper assignment of its boundaries in accordance to the actual physical state is to be done. The various boundary options that are to be set. After setting the boundary types, the continuum type is set. The geometry is discretized into small control volumes. Once the surface mesh is completed, the mesh details are exported to a mesh file, then exported to Fluent, which is CFD solver usually run in background mode. This helps to prioritize the execution of the run. The run would continue until the required convergence criterion is reached or till the maximum number of iterations is completed. Results indicate, in case of chamfered and rounded corners in square cylinder, there is decrease in the wake width and thereby the lift and drag coefficient values. The form drag is reduced because of a higher average pressure downstream when separation is delayed by corner modification. The lift coefficients of Square cylinder with corner modification decreases but Strouhal number increases when compared with a square cylinder without corner modification. Strouhal number remains same even if magnitude of oscillations is increased while monitoring the velocity behind the cylinder. Frequency of vortex shedding decreases with the introduction of second cylinder either in the upstream or downstream of the first cylinder. As the centre distance between two cylinders i.e., pitch-to-perimeter ratio is increased to 6,the behavior of the flow almost approaches to that of flow past a square cylinder of with and without modification of same condition. When the perimeter of the upstream cylinder with and without modification is larger than the downstream cylinder, the size of the eddies is always bigger in between the cylinders compared to the downstream of the second cylinder. The flow velocity in between the cylinders with and without corner modification are less compared to the downstream of the second cylinder. As the distance increases, the flow velocity in between the cylinders become almost equal to the downstream of the second cylinder. The results are presented in the form of streamlines, flow velocity, pressure distribution. drag coefficient, lift coefficient and Strouhal number.


2011 ◽  
Vol 680 ◽  
pp. 459-476 ◽  
Author(s):  
PRANESH MURALIDHAR ◽  
NANGELIE FERRER ◽  
ROBERT DANIELLO ◽  
JONATHAN P. ROTHSTEIN

Superhydrophobic surfaces have been shown to produce significant drag reduction for both laminar and turbulent flows of water through large- and small-scale channels. In this paper, a series of experiments were performed which investigated the effect of superhydrophobic-induced slip on the flow past a circular cylinder. In these experiments, circular cylinders were coated with a series of superhydrophobic surfaces fabricated from polydimethylsiloxane with well-defined micron-sized patterns of surface roughness. The presence of the superhydrophobic surface was found to have a significant effect on the vortex shedding dynamics in the wake of the circular cylinder. When compared to a smooth, no-slip cylinder, cylinders coated with superhydrophobic surfaces were found to delay the onset of vortex shedding and increase the length of the recirculation region in the wake of the cylinder. For superhydrophobic surfaces with ridges aligned in the flow direction, the separation point was found to move further upstream towards the front stagnation point of the cylinder and the vortex shedding frequency was found to increase. For superhydrophobic surfaces with ridges running normal to the flow direction, the separation point and shedding frequency trends were reversed. Thus, in this paper we demonstrate that vortex shedding dynamics is very sensitive to changes of feature spacing, size and orientation along superhydrophobic surfaces.


Author(s):  
Zhong Li ◽  
Mia Abrahamsen Prsic ◽  
Muk Chen Ong ◽  
Boo Cheong Khoo

Three-dimensional Large Eddy Simulations (LES) with Smagorinsky subgrid scale model have been performed for the flow past two free-spanning marine pipelines in tandem placed in the vicinity of a plane wall at a very small gap ratio, namely G/D = 0.1, 0.3 and 0.5. The ratio of cylinder center-to-center distance to cylinder diameter, or pitch ratio, L/D, considered in the simulations is taken as L/D = 2 and 5. This work serves as an extension of Abrahamsen Prsic et al. (2015) [1]. In essence, six sets of simulations have been performed in the subcritical Reynolds number regime at Re = 1.31 × 104. Our major findings can be summarized as follows. (1) At both pitch ratios, the wall proximity has a decreasing effect on the mean drag coefficient of the upstream cylinder. At L/D = 2, the mean drag coefficient of the downstream cylinder is negative since it is located within the drag inversion separation distance. (2) At L/D = 2, a squarish cavity-like flow exists between the tandem cylinders and flow circulates within the cavity. A long lee-wake recirculation zone is found behind the downstream cylinder at G/D = 0.1. However, a much smaller lee-wake recirculation zone is noticed at L/D = 5 with G/D = 0.1. (3) At L/D = 2, the reattachment is biased to the bottom shear layer due towards the deflection from the plane wall, which leads to the formation of the slanted squarish cavity-like flow where the flow circulates between the tandem cylinders.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ali Ahmed ◽  
Abdul Wahid ◽  
Raheela Manzoor ◽  
Noreen Nadeem ◽  
Naqib Ullah ◽  
...  

Numerical simulations are carried out to study the flow around two tandem square cylinders (SC) under the effect of spacing ratio(g/D) and splitter plate length (l/D) for a fixed Reynolds number (Re) = 100. The g/D is varied from 0 to 10 and l/D is varied from 0.5 to 10. The splitter plate length is found to have strong effect on vortex shedding and fluid forces. The maximum reduction in mean drag coefficient is observed at l/D = 8, that is 15% and 78% for upstream and downstream cylinders, respectively. The maximum reduction in root-mean-square value of lift coefficient is found at l/D = 10, that is 99%. The flow pattern at both of these points is steady flow. There is 100% vortex shedding suppression for l/D > 5. The observed flow patterns for flow past tandem cylinders without splitter plate are; single bluff body (SBB), steady flow (SF), quasi-steady flow (QSF), fully developed flow (FDF) and fully developed two-row vortex street flow (FDTRVS) regimes. SBB, QSF and SF regimes were observed in presence of splitter plate.


2020 ◽  
Vol 10 (5) ◽  
pp. 1870
Author(s):  
Zhongying Xiong ◽  
Xiaomin Liu

This work focuses on flow past a circular cylinder at a subcritical Reynolds number. Although this classical study has been a concern for many years, it is still a challenging task due to the complexity of flow characteristics. In this paper, a high-efficiency very large-eddy simulation method is adopted and verified in order to handle the oscillating boundary. A series of numerical simulations are conducted to investigate the transient flow around the oscillating cylinder. The results show that the vortex shedding mode varies with an increase in the excitation amplitude and the excitation frequency. Vortex shedding is a lasting process under the condition of a low excitation amplitude that leads to irregular fluctuations of the lift and drag coefficients. For a vortex shedding mode that exhibits a strong vortex pair and a weak vortex pair or a weak single vortex, the temporal evolution of the lift coefficient of the oscillating cylinder shows irregular ”jumping” at a specific time per cycle corresponding to the shedding of the strong vortex pair. The vortex shedding mode and the frequency and time of the vortex shedding co-determine the temporal evolutions of the lift and drag coefficient.


Sign in / Sign up

Export Citation Format

Share Document