A flow separation model for hydrofoil, propeller and duct sections with blunt trailing edges

2018 ◽  
Vol 861 ◽  
pp. 180-199 ◽  
Author(s):  
Weikang Du ◽  
Spyros A. Kinnas

The panel method does not apply to hydrofoils, propellers and ducts with blunt trailing edges due to the flow separation downstream. In this paper, a model is proposed to represent the flow separation with an extension, and a low-order panel method coupled with a boundary layer solver is used. The criteria of zero lift and zero moment are adopted to determine the end of the extension zone, and flow separation criteria are used to determine the starting points on either side of the section. The model is applied to hydrofoil, bare duct and ducted propeller sections with blunt trailing edges. The pressure distributions and skin frictions along the hydrofoils and ducts correlate well with those from the Reynolds-averaged Navier–Stokes method. The thrust and torque of the propeller agree much better with experimental measurements when the extension is determined from this model rather than choosing random locations. This model requires much less computational effort while preserving high accuracy, and thus can be used reliably in designing and analysing hydrofoils and propeller ducts with blunt trailing edges.

2015 ◽  
Vol 59 (03) ◽  
pp. 246-257 ◽  
Author(s):  
Spyros A. Kinnas ◽  
Hongyang Fan ◽  
Ye Tian

An improved perturbation potential-based panel method is applied to model the flow around ducted propellers. One significant development in this method is the application of full wake alignment scheme in which the trailing vortex wake sheets of the blades are aligned with the local flow velocity by also considering the effects of duct and duct wake. A process of repaneling the duct is simultaneously introduced to improve the accuracy of the method. The results from the improved wake model are compared with those from a simplified wake alignment scheme. At the same time, full-blown Reynolds-averaged Navier-Stokes (RANS) simulations are conducted via commercial solvers. The forces, i.e., thrust and torque, on the propeller predicted by this panel method under the improved wake alignment model show good agreement both with experimental measurements, a hybrid method developed by the Ocean Engineering Group of University of Texas at Austin, and the full-blown RANS simulations. Moreover, predicted pressure distribution on the blades and duct are compared among the various methods.


Author(s):  
Qin Zhang ◽  
Rajeev K. Jaiman ◽  
Peifeng Ma ◽  
Jing Liu

In this study, the ducted propeller has been numerically investigated under oblique flow, which is crucial and challenging for the design and safe operation of the thruster driven vessel and dynamic positioning (DP) system. A Reynolds-averaged Navier–Stokes (RANS) model has been first evaluated in the quasi-steady investigation on a single ducted propeller operating in open water condition, and then a hybrid RANS/LES model is adapted for the transient sliding mesh computations. A representative test geometry considered here is a marine model thruster, which is discretized with structured hexahedral cells, and the gap between the blade tip and nozzle is carefully meshed to capture the flow dynamics. The computational results are assessed by a systematic grid convergence study and compared with the available experimental data. As a part of the novel contribution, multiple incidence angles from 15 deg to 60 deg have been analyzed with different advance coefficients. The main emphasis has been placed on the hydrodynamic loads that act on the propeller blades and nozzle as well as their variation with different configurations. The results reveal that while the nozzle absorbs much effort from the oblique flow, the imbalance between blades at different positions is still noticeable. Such unbalance flow dynamics on the blades, and the nozzle has a direct implication on the variation of thrust and torque of a marine thruster.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
J. Baltazar ◽  
J. A. C. Falcão de Campos ◽  
J. Bosschers

This paper discusses several modelling aspects that are important for the performance predictions of a ducted propulsor with a low-order Panel Method. The aspects discussed are the alignment of the wake geometry, the influence of the duct boundary layer on the wake pitch, and the influence of a transpiration velocity through the gap. The analysis is carried out for propeller Ka4-70 operating without and inside a modified duct 19A, in which the rounded trailing edge is replaced by a sharp trailing edge. Experimental data for the thrust and torque are used to validate the numerical results. The pitch of the tip vortex is found to have a strong influence on the propeller and duct loads. A good agreement with the measurements is achieved when the wake alignment is corrected for the presence of the duct boundary layer.


2019 ◽  
Vol 63 (4) ◽  
pp. 219-234
Author(s):  
João Baltazar ◽  
José A. C. Falcão de Campos ◽  
Johan Bosschers ◽  
Douwe Rijpkema

This article presents an overview of the recent developments at Instituto Superior Técnico and Maritime Research Institute Netherlands in applying computational methods for the hydrodynamic analysis of ducted propellers. The developments focus on the propeller performance prediction in open water conditions using boundary element methods and Reynolds-averaged Navier-Stokes solvers. The article starts with an estimation of the numerical errors involved in both methods. Then, the different viscous mechanisms involved in the ducted propeller flow are discussed and numerical procedures for the potential flow solution proposed. Finally, the numerical predictions are compared with experimental measurements.


Author(s):  
Johannes Ruhland ◽  
Christian Breitsamter

AbstractThis study presents two-dimensional aerodynamic investigations of various high-lift configuration settings concerning the deflection angles of droop nose, spoiler and flap in the context of enhancing the high-lift performance by dynamic flap movement. The investigations highlight the impact of a periodically oscillating trailing edge flap on lift, drag and flow separation of the high-lift configuration by numerical simulations. The computations are conducted with regard to the variation of the parameters reduced frequency and the position of the rotational axis. The numerical flow simulations are conducted on a block-structured grid using Reynolds Averaged Navier Stokes simulations employing the shear stress transport $$k-\omega $$ k - ω turbulence model. The feature Dynamic Mesh Motion implements the motion of the oscillating flap. Regarding low-speed wind tunnel testing for a Reynolds number of $$0.5 \times 10^{6}$$ 0.5 × 10 6 the flap movement around a dropped hinge point, which is located outside the flap, offers benefits with regard to additional lift and delayed flow separation at the flap compared to a flap movement around a hinge point, which is located at 15 % of the flap chord length. Flow separation can be suppressed beyond the maximum static flap deflection angle. By means of an oscillating flap around the dropped hinge point, it is possible to reattach a separated flow at the flap and to keep it attached further on. For a Reynolds number of $$20 \times 10^6$$ 20 × 10 6 , reflecting full scale flight conditions, additional lift is generated for both rotational axis positions.


2015 ◽  
Author(s):  
Mohammed Islam ◽  
Fatima Jahra ◽  
Michael Doucet

Mesh and domain optimization strategies for a RANS solver to accurately estimate the open water propulsive characteristics of fixed pitch propellers are proposed based on examining the effect of different mesh and computation domain parameters. The optimized mesh and domain size parameters were selected using Design of Experiments (DoE) methods enabling simulations to be carried out in a limited memory environment, and in a timely manner; without compromising the accuracy of results. A Reynolds-Averaged Navier Stokes solver is used to predict the propulsive performance of a fixed pitch propeller. The predicted thrust and torque for the propeller were compared to the corresponding measurements. A total of six meshing parameters were selected that could affect the computational results of propeller open water performance. A two-level fractional factorial design was used to screen out parameters that do not significantly contribute to explaining the dependent parameters: namely simulation time, propeller thrust and propeller torque. A total of 32 simulations were carried out only to find out that the selected six meshing parameters were significant in defining the response parameters. Optimum values of each of the input parameters were obtained for the DOE technique and additional simulations were run with those parameters. The simulation results were validated using open water experimental results of the same propeller. It was found that with the optimized meshing arrangement, the propeller opens simulation time was reduced by at least a factor of 6 as compared to the generally popular meshing arrangement. Also, the accuracy of propulsive characteristics was improved by up to 50% as compared to published simulation results. The methodologies presented in this paper can be similarly applied to other simulations such as calm water ship resistance, ship propulsion to systematically derive the optimized meshing arrangement for simulations with minimal simulation time and maximum accuracy. This investigation was carried out using STAR-CCM+, a commercial CFD package; however the findings can be applied to any RANS solver.


2010 ◽  
Vol 15 (4) ◽  
pp. 491-504 ◽  
Author(s):  
Abdul M. Siddiqui ◽  
Tahira Haroon ◽  
Saira Bhatti ◽  
Ali R. Ansari

The objective of this paper is to compare two methods employed for solving nonlinear problems, namely the Adomian Decomposition Method (ADM) and the Homotopy Perturbation Method (HPM). To this effect we solve the Navier‐Stokes equations for the unsteady flow between two circular plates approaching each other symmetrically. The comparison between HPM and ADM is bench‐marked against a numerical solution. The results show that the ADM is more reliable and efficient than HPM from a computational viewpoint. The ADM requires slightly more computational effort than the HPM, but it yields more accurate results than the HPM.


1989 ◽  
Vol 111 (4) ◽  
pp. 400-407 ◽  
Author(s):  
M. J. Morris ◽  
J. C. Dutton

The results of an experimental investigation into the flowfield characteristics of butterfly valves under compressible flow operating conditions are reported. The experimental results include Schlieren and surface flow visualizations and flowfield static pressure distributions. Two valve disk shapes have been studied in a planar, two-dimensional test section: a generic biconvex circular arc profile and the midplane cross-section of a prototype butterfly valve. The valve disk angle and operating pressure ratio have also been varied in these experiments. The results demonstrate that under certain conditions of operation the butterfly valve flowfield can be extremely complex with oblique shock waves, expansion fans, and regions of flow separation and reattachment. In addition, the sensitivity of the valve disk surface pressure distributions to the local geometry near the leading and trailing edges and the relation of the aerodynamic torque to flow separation and reattachment on the disk are shown.


Author(s):  
E. Boujo ◽  
F. Gallaire

A variational technique is used to derive analytical expressions for the sensitivity of several geometric indicators of flow separation to steady actuation. Considering the boundary layer flow above a wall-mounted bump, the six following representative quantities are considered: the locations of the separation point and reattachment point connected by the separatrix, the separation angles at these stagnation points, the backflow area and the recirculation area. For each geometric quantity, linear sensitivity analysis allows us to identify regions which are the most sensitive to volume forcing and wall blowing/suction. Validations against full nonlinear Navier−Stokes calculations show excellent agreement for small-amplitude control for all considered indicators. With very resemblant sensitivity maps, the reattachment point, the backflow and recirculation areas are seen to be easily manipulated. By contrast, the upstream separation point and the separatrix angles are seen to remain extremely robust with respect to external steady actuation.


1994 ◽  
Vol 116 (1) ◽  
pp. 14-22 ◽  
Author(s):  
M. G. Dunn ◽  
J. Kim ◽  
K. C. Civinskas ◽  
R. J. Boyle

Time-averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row and the first-stage blade row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. These measurements were made at 10, 50, and 90 percent span on both the pressure and suction surfaces of the component. Stanton-number distributions are also reported for the second-stage vane at 50 percent span. A shock tube is used as a short-duration source of heated and pressurized air to which the turbine is subjected. Platinum thin-film gages are used to obtain the heat-flux measurements and miniature silicone-diaphragm pressure transducers are used to obtain the surface pressure measurements. The first-stage vane Stanton number distributions are compared with predictions obtained using a quasi-three dimensional Navier–Stokes solution and a version of STAN5. This same N–S technique was also used to obtain predictions for the first blade and the second vane.


Sign in / Sign up

Export Citation Format

Share Document