The transition to turbulence in shock-driven mixing: effects of Mach number and initial conditions

2019 ◽  
Vol 871 ◽  
pp. 595-635 ◽  
Author(s):  
Mohammad Mohaghar ◽  
John Carter ◽  
Gokul Pathikonda ◽  
Devesh Ranjan

The effects of incident shock strength on the mixing transition in the Richtmyer–Meshkov instability (RMI) are experimentally investigated using simultaneous density–velocity measurements. This effort uses a shock with an incident Mach number of 1.9, in concert with previous work at Mach 1.55 (Mohaghar et al., J. Fluid Mech., vol. 831, 2017 pp. 779–825) where each case is followed by a reshock wave. Single- and multi-mode interfaces are used to quantify the effect of initial conditions on the evolution of the RMI. The interface between light and heavy gases ($\text{N}_{2}/\text{CO}_{2}$, Atwood number, $A\approx 0.22$; amplitude to wavelength ratio of 0.088) is created in an inclined shock tube at $80^{\circ }$ relative to the horizontal, resulting in a predominantly single-mode perturbation. To investigate the effects of initial perturbations on the mixing transition, a multi-mode inclined interface is also created via shear and buoyancy superposed on the dominant inclined perturbation. The evolution of mixing is investigated via the density fields by computing mixed mass and mixed-mass thickness, along with mixing width, mixedness and the density self-correlation (DSC). It is shown that the amount of mixing is dependent on both initial conditions and incident shock Mach number. Evolution of the density self-correlation is discussed and the relative importance of different DSC terms is shown through fields and spanwise-averaged profiles. The localized distribution of vorticity and the development of roll-up features in the flow are studied through the evolution of interface wrinkling and length of the interface edge, which indicate that the vorticity concentration shows a strong dependence on the Mach number. The contribution of different terms in the Favre-averaged Reynolds stress is shown, and while the mean density-velocity fluctuation correlation term, $\langle \unicode[STIX]{x1D70C}\rangle \langle u_{i}^{\prime }u_{j}^{\prime }\rangle$, is dominant, a high dependency on the initial condition and reshock is observed for the turbulent mass-flux term. Mixing transition is analysed through two criteria: the Reynolds number (Dimotakis, J. Fluid Mech., vol. 409, 2000, pp. 69–98) for mixing transition and Zhou (Phys. Plasmas, vol. 14 (8), 2007, 082701 for minimum state) and the time-dependent length scales (Robey et al., Phys. Plasmas, vol. 10 (3), 2003, 614622; Zhou et al., Phys. Rev. E, vol. 67 (5), 2003, 056305). The Reynolds number threshold is surpassed in all cases after reshock. In addition, the Reynolds number is around the threshold range for the multi-mode, high Mach number case ($M\sim 1.9$) before reshock. However, the time-dependent length-scale threshold is surpassed by all cases only at the latest time after reshock, while all cases at early times after reshock and the high Mach number case at the latest time before reshock fall around the threshold. The scaling analysis of the turbulent kinetic energy spectra after reshock at the latest time, at which mixing transition analysis suggests that an inertial range has formed, indicates power scaling of $-1.8\pm 0.05$ for the low Mach number case and $-2.1\pm 0.1$ for the higher Mach number case. This could possibly be related to the high anisotropy observed in this flow resulting from strong, large-scale streamwise fluctuations produced by large-scale shear.

2021 ◽  
Author(s):  
Artem Bohdan ◽  
Martin Pohl ◽  
Jacek Niemiec ◽  
Paul J. Morris ◽  
Yosuke Matsumoto ◽  
...  

<p>High-Mach-number collisionless shocks are found in planetary systems and supernova remnants (SNRs). Electrons are heated at these shocks to temperatures well above the Rankine–Hugoniot prediction. However, the processes responsible for causing the electron heating are still not well understood. We use a set of large-scale particle-in-cell simulations of nonrelativistic shocks in the high-Mach-number regime to clarify the electron heating processes. The physical behavior of these shocks is defined by ion reflection at the shock ramp. Further interactions between the reflected ions and the upstream plasma excites electrostatic Buneman and two-stream ion–ion Weibel instabilities. Electrons are heated via shock surfing acceleration, the shock potential, magnetic reconnection, stochastic Fermi scattering, and shock compression. The main contributor is the shock potential. The magnetic field lines become tangled due to the Weibel instability, which allows for parallel electron heating by the shock potential. The constrained model of electron heating predicts an ion-to-electron temperature ratio within observed values at SNR shocks and in Saturn’s bow shock. We also present evidence for field amplification by the Weibel instability. The normalized magnetic field strength strongly correlates with the Alfvenic Mach number, as is in-situ observed at Saturn's bow shock.</p>


2003 ◽  
Vol 21 (3) ◽  
pp. 341-346 ◽  
Author(s):  
O. SADOT ◽  
A. RIKANATI ◽  
D. ORON ◽  
G. BEN-DOR ◽  
D. SHVARTS

The present article describes an experimental study that is a part of an integrated theoretical (Rikanatiet al.2003) and experiential investigation of the Richtmyer–Meshkov (RM) hydrodynamic instability that develops on a perturbed contact surface by a shock wave. The Mach number and the high initial-amplitude effects on the evolution of the single-mode shock-wave-induced instability were studied. To distinguish between the above-mentioned effects, two sets of shock-tube experiments were conducted: high initial amplitudes with a low-Mach incident shock and small amplitude initial conditions with a moderate-Mach incident shock. In the high-amplitude experiments a reduction of the initial velocity with respect to the linear prediction was measured. The results were compared to those predicted by a vorticity deposition model and to previous experiments with moderate and high Mach numbers done by others and good agreement was found. The result suggested that the high initial-amplitude effect is the dominant one rather than the high Mach number effect as suggested by others. In the small amplitude–moderate Mach numbers experiments, a reduction from the impulsive theory was noted at late stages. It is concluded that while high Mach number effect can dramatically change the behavior of the flow at all stages, the high initial-amplitude effect is of minor importance at the late stages. That result is supported by a two-dimensional numerical simulation.


1989 ◽  
Author(s):  
GLOYD SIMMONS ◽  
GORDON NELSON ◽  
ROBERT HIERS ◽  
ARTHURB. WESTERN

Author(s):  
Savvas S. Xanthos ◽  
Yiannis Andreopoulos

The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence; a type of interaction free from streamline curvature effects, which cause additional effects on turbulence. In this experiment, wall pressure, total pressure and velocity were measured indicating a clear reduction in fluctuations. The incoming flow at Mach number 0.46 was expanded to a flow with Mach number 0.77 by an applied mean shear of 100 s−1. Although the strength of the generated expansion waves was mild, the effect on damping fluctuations on turbulence was clear. A reduction of in the level of total pressure fluctuations by 20 per cent was detected in the present experiments.


1984 ◽  
Vol 37 (1-2) ◽  
Author(s):  
C.S. Wu ◽  
D. Winske ◽  
Y.M. Zhou ◽  
S.T. Tsai ◽  
P. Rodriguez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document