Study of wave effect on vorticity in Langmuir turbulence using wave-phase-resolved large-eddy simulation

2019 ◽  
Vol 875 ◽  
pp. 173-224 ◽  
Author(s):  
Anqing Xuan ◽  
Bing-Qing Deng ◽  
Lian Shen

The effects of a water surface wave on the vorticity in the turbulence underneath are studied for Langmuir turbulence using wave-phase-resolved large-eddy simulation. The simulations are performed on a dynamically evolving wave-surface-fitted grid such that the phase-resolved wave motions and their effects on the turbulence are explicitly captured. This study focuses on the vorticity structures and dynamics in Langmuir turbulence driven by a steady and co-aligned progressive wave and surface shear stress. For the first time, the detailed vorticity dynamics of the wave–turbulence interaction in Langmuir turbulence in a wave-phase-resolved frame is revealed. The wave-phase-resolved simulation provides detailed descriptions of many characteristic features of Langmuir turbulence, such as elongated quasi-streamwise vortices. The simulation also reveals the variation of the strength and the inclination angles of the vortices with the wave phase. The variation is found to be caused by the periodic stretching and tilting of the wave orbital straining motions. The cumulative effect of the wave on the wave-phase-averaged vorticity is analysed using the Lagrangian average. It is discovered that, in addition to the tilting effect induced by the Lagrangian mean shear gradient of the wave, the phase correlation between the vorticity fluctuations and the wave orbital straining is also important to the cumulative vorticity evolution. Both the fluctuation correlation effect and the mean tilting effect are found to amplify the streamwise vorticity. On the other hand, for the vertical vorticity, the fluctuation correlation effect cancels the mean tilting effect, and the net change of the vertical vorticity by the wave straining is negligible. As a result, the wave straining enhances only the streamwise vorticity and cumulatively tilts vertical vortices towards the streamwise direction. The above processes are further quantified analytically. The role of the fluctuation correlation effect in the wave-phase-averaged vorticity dynamics provides a deeper understanding of the physical processes underlying the wave–turbulence interaction in Langmuir turbulence.

2021 ◽  
Vol 9 (11) ◽  
pp. 1198
Author(s):  
Linlin Geng ◽  
Desheng Zhang ◽  
Jian Chen ◽  
Xavier Escaler

The tip leakage vortex (TLV) has aroused great concern for turbomachine performance, stability and noise generation as well as cavitation erosion. To better understand structures and dynamics of the TLV, large-eddy simulation (LES) is coupled with a homogeneous cavitation model to simulate the cavitation flow around a NACA0009 hydrofoil with a given clearance. The numerical results are validated by comparisons with experimental measurements. The results demonstrate that the present LES can well predict the mean behavior of the TLV. By visualizing the mean streamlines and mean streamwise vorticity, it shows that the TLV dominates the end-wall vortex structures, and that the generation and evolution of the other vortices are found to be closely related to the development of the TLV. In addition, as the TLV moves downstream, it undergoes an interesting progression, i.e., the vortex core radius keeps increasing and the axial velocity of vortex center experiences a conversion from jet-like profile to wake-like profile.


Author(s):  
Mehrdad Shademan ◽  
Vesselina Roussinova ◽  
Ron Barron ◽  
Ram Balachandar

Large Eddy Simulation (LES) has been carried out to study the flow of a turbulent impinging jet with large nozzle height-to-diameter ratio. The dynamic Smagorinsky model was used to simulate the subgrid-scale stresses. The jet exit Reynolds number is 28,000. The study presents a detailed evaluation of the flow characteristics of an impinging jet with nozzle height of 20 diameters above the plate. Results of the mean normalized centerline velocity and wall shear stress show good agreement with previous experiments. Analysis of the flow field shows that vortical structures generated due to the Kelvin-Helmholtz instabilities in the shear flow close to the nozzle undergo break down or merging when moving towards the plate. Unlike impinging jets with small stand-off distance where the ring-like vortices keep their interconnected shape upon reaching the plate, no sign of interconnection was observed on the plate for this large stand-off distance. A large deflection of the jet axis was observed for this type of impinging jet when compared to the cases with small nozzle height-to-diameter ratios.


2017 ◽  
Vol 20 (1) ◽  
pp. 1-20
Author(s):  
Karima Heguehoug ép. Benkara-Mostefa ◽  
Zoubir Nemouchi ◽  
Lahouari Adjlout

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Hyunchul Jang ◽  
Aman Verma ◽  
Krishnan Mahesh

Propulsor crashback is an off-design operating condition where a propulsor rotates in the reverse direction to yield negative thrust. Crashback is characterized by the interaction of the free stream with the reverse flow generated by propulsor rotation. This causes a highly unsteady vortex ring which leads to flow separation and unsteady forces and moments on the blades. Large eddy simulation (LES) is performed for marine propulsors in crashback for various configurations and advance ratios and validated against experiments. The predictive capability of LES as a tool for propulsor crashback is demonstrated on an open propulsor, open propulsor with a submarine hull, and ducted propulsor with and without stator blades. LES is in good agreement with experiments for the mean and RMS levels, and spectra of the unsteady loads on the propulsors.


Author(s):  
L. Fang ◽  
L. Shao ◽  
J. P. Bertoglio ◽  
L. P. Lu ◽  
Z. S. Zhang

In large eddy simulation of turbulent flow, because of the spatial filter, inhomogeneity and anisotropy affect the subgrid stress via the mean flow gradient. A method of evaluating the mean effects is to split the subgrid stress tensor into “rapid” and “slow” parts. This decomposition was introduced by Shao et al. (1999) and applied to A Priori tests of existing subgrid models in the case of a turbulent mixing layer. In the present work, the decomposition is extended to the case of a passive scalar in inhomogeneous turbulence. The contributions of rapid and slow subgrid scalar flux, both in the equations of scalar variance and scalar flux, are analyzed. A Priori numerical tests are performed in a turbulent Couette flow with a mean scalar gradient. Results are then used to evaluate the performances of different popular subgrid scalar models. It is shown that existing models can not well simulate the slow part and need to be improved. In order to improve the modeling, an extension of the model proposed by Cui et al. (2004) is introduced for the slow part, whereas the Scale-Similarity model is used reproduce the rapid part. Combining both models, A Priori tests lead to a better performance. However, the remaining problem is that none eddy-diffusion model can correctly represent the strong scalar dissipation near the wall. This problem will be addressed in future work.


2013 ◽  
Vol 70 (9) ◽  
pp. 2751-2767 ◽  
Author(s):  
Dorota Jarecka ◽  
Wojciech W. Grabowski ◽  
Hugh Morrison ◽  
Hanna Pawlowska

Abstract This paper presents an approach to locally predict homogeneity of the subgrid-scale turbulent mixing in large-eddy simulation of shallow clouds applying double-moment warm-rain microphysics. The homogeneity of subgrid-scale mixing refers to the partitioning of the cloud water evaporation due to parameterized entrainment between changes of the mean droplet radius and changes of the mean droplet concentration. Homogeneous and extremely inhomogeneous mixing represent two limits of possible scenarios, where the droplet concentration and the mean droplet radius remains unchanged during the microphysical adjustment, respectively. To predict the subgrid-scale mixing scenario, the double-moment microphysics scheme is merged with the approach to delay droplet evaporation resulting from entrainment. Details of the new scheme and its application in the Barbados Oceanographic and Meteorological Experiment (BOMEX) shallow convection case are discussed. The simulated homogeneity of mixing varies significantly inside small convective clouds, from close to homogeneous to close to extremely inhomogeneous. The mean mixing characteristics become more homogeneous with height, reflecting increases of the mean droplet size and the mean turbulence intensity, both favoring homogeneous mixing. Model results are consistent with microphysical effects of entrainment and mixing deduced from field observations. Mixing close to homogeneous is predicted in volumes with the highest liquid water content (LWC) and strongest updraft at a given height, whereas mixing in strongly diluted volumes is typically close to extremely inhomogeneous. The simulated homogeneity of mixing has a small impact on mean microphysical characteristics. This result agrees with the previous study applying prescribed mixing scenarios and can be explained by the high humidity of the clear air involved in the subgrid-scale mixing.


Author(s):  
Aroon K. Viswanathan ◽  
Danesh K. Tafti

Results from Large Eddy Simulation (LES) of fully developed flow in a ribbed duct are presented with rib pitch-to-height ratio (P/e) is 10 and a rib height to hydraulic diameter ratio (e/Dh) is 0.1. Computations are carried out on a square duct with 45° ribs on the top and bottom walls arranged in a staggered fashion. The ribs have a rounded cross-section and are skewed at 45° to the main flow. The Reynolds number based on bulk velocity is 25,000. Mean flow and turbulent quantities, together with heat transfer and friction augmentation results are presented for a stationary case. The flow is characterized by a helical vortex behind each rib and a complementary cross-sectional secondary flow, both of which result from the angle of the rib with respect to the mean flow and result in a spanwise variation of the heat transfer. The mean flow, the turbulent quantities and the heat transfer in the duct show similar trends as in the duct with square cross-section ribs. However the results show that there is lesser friction in the ducts with rounded ribs. The overall heat transfer on the ribbed wall was augmented by 2.85 times that of a smooth duct, at the cost of friction which increases by a factor of 10. The computed values compare well with the experimental values.


2009 ◽  
Vol 643 ◽  
pp. 233-266 ◽  
Author(s):  
BISHAKHDATTA GAYEN ◽  
SUTANU SARKAR ◽  
JOHN R. TAYLOR

A numerical study based on large eddy simulation is performed to investigate a bottom boundary layer under an oscillating tidal current. The focus is on the boundary layer response to an external stratification. The thermal field shows a mixed layer that is separated from the external stratified fluid by a thermocline. The mixed layer grows slowly in time with an oscillatory modulation by the tidal flow. Stratification strongly affects the mean velocity profiles, boundary layer thickness and turbulence levels in the outer region although the effect on the near-bottom unstratified fluid is relatively mild. The turbulence is asymmetric between the accelerating and decelerating stages. The asymmetry is more pronounced with increasing stratification. There is an overshoot of the mean velocity in the outer layer; this jet is linked to the phase asymmetry of the Reynolds shear stress gradient by using the simulation data to examine the mean momentum equation. Depending on the height above the bottom, there is a lag of the maximum turbulent kinetic energy, dissipation and production with respect to the peak external velocity and the value of the lag is found to be influenced by the stratification. Flow instabilities and turbulence in the bottom boundary layer excite internal gravity waves that propagate away into the ambient. Unlike the steady case, the phase lines of the internal waves change direction during the tidal cycle and also from near to far field. The frequency spectrum of the propagating wave field is analysed and found to span a narrow band of frequencies clustered around 45°.


2013 ◽  
Vol 13 (1) ◽  
pp. 1489-1526 ◽  
Author(s):  
D. Jarecka ◽  
H. Pawlowska ◽  
W. W. Grabowski ◽  
A. A. Wyszogrodzki

Abstract. This paper discusses aircraft observations and large-eddy simulation (LES) of the 15 May 2008, North Sea boundary-layer clouds from the EUCAARI-IMPACT field campaign. These clouds were advected from the north-east by the prevailing lower-tropspheric winds, and featured stratocumulus-over-cumulus cloud formations. Almost-solid stratocumulus deck in the upper part of the relatively deep weakly decoupled marine boundary layer overlaid a field of small cumuli with a cloud fraction of ~10%. The two cloud formations featured distinct microphysical characteristics that were in general agreement with numerous past observations of strongly-diluted shallow cumuli on the one hand and solid marine boundary-layer stratocumulus on the other. Macrophysical and microphysical cloud properties were reproduced well by the double-moment warm-rain microphysics large-eddy simulation. A novel feature of the model is its capability to locally predict homogeneity of the subgrid-scale mixing between the cloud and its cloud-free environment. In the double-moment warm-rain microphysics scheme, the homogeneity is controlled by a single parameter α, that ranges from 0 to 1 and limiting values representing the homogeneous and the extremely inhomogeneous mixing scenarios, respectively. Parameter α depends on the characteristic time scales of the droplet evaporation and of the turbulent homogenization. In the model, these scales are derived locally based on the subgrid-scale turbulent kinetic energy, spatial scale of cloudy filaments, the mean cloud droplet radius, and the humidity of the cloud-free air entrained into the cloud. Simulated mixing is on average quite inhomogeneous, with the mean parameter α around 0.7 across the entire depth of the cloud field, but with local variations across almost the entire range, especially near the base and the top of the cloud field.


Sign in / Sign up

Export Citation Format

Share Document