Experimental data for solid–liquid flows at intermediate and high Stokes numbers

2019 ◽  
Vol 883 ◽  
Author(s):  
Sarah E. Mena ◽  
Jennifer Sinclair Curtis

Author(s):  
Larissa Steiger de Freitas ◽  
Marcus Vinícius Canhoto Alves ◽  
Rafael Rodrigues Francisco

2000 ◽  
Vol 26 (5) ◽  
pp. 763-781 ◽  
Author(s):  
Roberto Zenit ◽  
Melany L. Hunt

2021 ◽  
Vol 21 (3) ◽  
pp. 554
Author(s):  
Putri Restu Dewati ◽  
Rochmadi Rochmadi ◽  
Abdul Rohman ◽  
Avido Yuliestyan ◽  
Arief Budiman

Astaxanthin is a natural antioxidant, and the highest content of this compound is found in Haematococcus pluvialis microalgae. Microwave-assisted extraction (MAE) is one of the environmentally friendly extraction methods and has many advantages. This study aims to investigate the extraction of astaxanthin through the MAE method using various solvents. Several equilibrium models were proposed to describe this solid-liquid equilibrium. The solid-liquid extraction equilibrium parameters were determined by minimizing the sum of squares of errors (SSE), in which equilibrium constants were needed for scaling up purposes. Previously, the microalgae were pretreated with HCl to soften their cell walls in order to improve the extraction recovery. In this study, dichloromethane, acetone, methanol, and ethanol were used as the solvents for extraction. The astaxanthin concentration was determined by high-performance liquid chromatography (HPLC) and spectrophotometry. Astaxanthin was found to attain equilibrium at 57.42% recovery in a single-step extraction. Thus, several steps were required in sequence to obtain an optimum recovery. The experimental data were fitted to three equilibrium models, namely, Henry, Freundlich, and Langmuir models. The experimental data were well fitted to all the models for the extraction in dichloromethane, methanol, ethanol and acetone, as evident from the almost same SSE value for each model.


2011 ◽  
Vol 26 (17) ◽  
pp. 2232-2239 ◽  
Author(s):  
Jae Ho Lee ◽  
Michael A. Carpenter ◽  
Robert E. Geer

Abstract


Author(s):  
Rufat Abiev

Analysis of hydrodynamics and mass transfer Taylor flows in micro channels of both gas-liquid and liquid-liquid systems on the basis of classical theoretical approach with some simplifying assumptions was performed. Results of theoretical analysis for description of hydrodynamic parameters and mass transfer characteristics were confirmed by comparison with the author's own and available in literature experimental data. It was shown that the main parameters of two-phase Taylor flows could be quite precisely described theoretically: mean bubble/droplet velocity, liquid film thickness, real gas holdup (which is always smaller than so-called dynamic holdup), pressure drop. Peculiarities of liquid-liquid flows compared to gas-liquid Taylor flows in capillaries are discussed. Wettability effect on hydrodynamics was examined. Tools of mass transfer intensification of gas-liquid and liquid-liquid Taylor flow in micro channels are analyzed. Three-layer model for heat and mass transfer has been proposed and implemented for the case of solid-liquid mass transfer for gas-liquid Taylor flows; optimal process conditions for this process are found theoretically and discussed from physical point of view.


Author(s):  
R. Arismendi ◽  
L. Gomez ◽  
S. Wang ◽  
R. Mohan ◽  
O. Shoham ◽  
...  

The hydrodynamic behavior of gas-liquid-solids in a modified GLCC© has been studied for the first time experimentally and theoretically. A GLCC© experimental facility has been designed, constructed and utilized to acquire data on gas-solid-liquid flow in both upstream 2-inch injection line horizontal section and in the 3-inch GLCC©. Experimental data have been acquired for the minimum gas velocity required to transport the solids up to the liquid injection point, and for the minimum liquid injection rate necessary to wet the solids and capture them in the liquid phase. The data have been acquired for 4 solid particle sizes of 5 μm, 25 μm, 50 μm and 150 μm. A mechanistic model has been developed or modified for solids transport/ separation, for the prediction of the minimum transport gas velocity, and the required minimum liquid injection rate. A comparison between the model prediction and the acquired experimental data shows good agreement. The average relative error for minimum transport gas and liquid velocities are, 4.3% and 9.55%, respectively.


2015 ◽  
Vol 37 (5-6) ◽  

In the 1970s, IUPAC’s Solubility Data Commission (now the Subcommittee on Solubility and Equilibrium Data) embarked on a project to compile and critically evaluate experimental data for solubility in systems of scientific and practical interest. The first volume in the IUPAC Solubility Data Series, covering the solubility of helium and neon in liquid solvents, was published in 1979. Subsequent years saw many volumes on gas-liquid, liquid-liquid, and solid-liquid solubilities. These volumes are an invaluable scientific resource.


Author(s):  
Ernesto A Martínez ◽  
Marco Giulietti ◽  
Mauricio Uematsu ◽  
Silas Derenzo ◽  
João B Almeida e Silva

This work deals with the study of thermodynamical models for the solid-liquid equilibrium (SLE) and comparing its performance with experimental data. The xylose solubility in the xylose-water and xylose-water-ethanol systems has been measured using a variant of the isothermal method. A total of 12 experiments were performed in a 100 mL glass jacketed crystallizer with helix-type agitator by changing the temperature from 0 to 60°C. The solution was mixed during 72 h with an IKA Labortechnic, RW 20.n agitator at 450 rpm. Later, the experimental and reported results were fitted using the prediction models based on the vapor-liquid-equilibrium (UNIFAC (Universal Functional Activity Coefficient), ASOG (Analytical Solutions of Groups) and GSP (Group Solubility Parameter); semi-empirical models based on the vapor-liquid-equilibrium (VLE) (UNIQUAC (Universal Quasi Chemical), Wilson and NRTL (Non Randon Two Liquid)) on the solid-liquid-equilibrium, and empirical model with fitted parameters (Nývlt, λh, Margules with 1 and 2 parameters). The results showed that the UNIQUAC model with fitted parameters can describe the SLE with reasonable accuracy (1.28 and 3.36% for binary and ternary systems, respectively). The average deviation was the arithmetic mean of the deviations. On the other hand, the other methods resulted in poor agreement with the system’s behavior presenting systematic deviations from the experimental data.


Sign in / Sign up

Export Citation Format

Share Document