scholarly journals Electroviscous Effect of Power Law Fluids in a Slit Microchannel With Asymmetric Wall Zeta Potentials

2018 ◽  
Vol 35 (4) ◽  
pp. 537-547 ◽  
Author(s):  
A. Sailaja ◽  
B. Srinivas ◽  
I. Sreedhar

ABSTRACTThis work analyzes the pressure driven flow of a power law fluid in a slit microchannel of asymmetric walls with electroviscous effects. The steady state Cauchy momentum and the Poisson-Boltzmann equation are solved for the velocity and the potential distribution inside the microchannel. The Debye-Huckel approximation as applicable for low zeta potentials is not made in the present work. The unknown streaming potential is solved by casting the governing equations as an optimization problem using COMSOL Multiphysics. This proposed method is very robust and can be used for a wide variety of cases. It is found that the asymmetry of the zeta potential at the two walls plays an important role on the streaming potential developed. There is a unique zeta potential ratio at which the streaming potential exhibits a maxima for both Debye-Huckel parameter and the power law index. Shear thinning fluids exhibit a stronger dependency of the streaming potential on asymmetry of the zeta potential than shear thickening fluids. For Newtonian fluids narrow slit microchannels develop larger streaming potentials compared to wider microchannels for a given asymmetry.

1963 ◽  
Vol 18 (6) ◽  
pp. 1263-1264 ◽  
Author(s):  
R. E. Beck ◽  
V. Mirkovitch ◽  
P. G. Andrus ◽  
R. I. Leininger

A system was developed to measure the streaming potential generated between the ends of a capillary by the flow of a fluid through the capillary. Zeta potential can be calculated from the streaming potential. Adequate sensitivity and reproducibility were achieved by making special electrodes: silver wires plated in KCl solution and embedded in agar, careful electrical shielding, and provision for reversal of flow through the capillary to minimize electrode errors. The apparatus was developed to measure streaming potentials generated by either RingerS's solution or blood in contact with capillaries made of different materials such as quartz, polyethylene, etc. An example of a determination using a quartz capillary is presented. interfaces; blood; salt solutions; glass; quartz Submitted on February 25, 1963


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 504 ◽  
Author(s):  
Du-Soon Choi ◽  
Sungchan Yun ◽  
WooSeok Choi

Electroosmotic flow (EOF) is one of the most important techniques in a microfluidic system. Many microfluidic devices are made from a combination of different materials, and thus asymmetric electrochemical boundary conditions should be applied for the reasonable analysis of the EOF. In this study, the EOF of power-law fluids in a slit microchannel with different zeta potentials at the top and bottom walls are studied analytically. The flow is assumed to be steady, fully developed, and unidirectional with no applied pressure. The continuity equation, the Cauchy momentum equation, and the linearized Poisson-Boltzmann equation are solved for the velocity field. The exact solutions of the velocity distribution are obtained in terms of the Appell’s first hypergeometric functions. The velocity distributions are investigated and discussed as a function of the fluid behavior index, Debye length, and the difference in the zeta potential between the top and bottom.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adham Riad ◽  
Behnam Khorshidi ◽  
Mohtada Sadrzadeh

Abstract Investigating the flow behavior in microfluidic systems has become of interest due to the need for precise control of the mass and momentum transport in microfluidic devices. In multilayered-flows, precise control of the flow behavior requires a more thorough understanding as it depends on multiple parameters. The following paper proposes a microfluidic system consisting of an aqueous solution between a moving plate and a stationary wall, where the moving plate mimics a charged oil–water interface. Analytical expressions are derived by solving the nonlinear Poisson–Boltzmann equation along with the simplified Navier–Stokes equation to describe the electrokinetic effects on the shear-driven flow of the aqueous electrolyte solution. The Debye–Huckel approximation is not employed in the derivation extending its compatibility to high interfacial zeta potential. Additionally, a numerical model is developed to predict the streaming potential flow created due to the shear-driven motion of the charged upper wall along with its associated electric double layer effect. The model utilizes the extended Nernst–Planck equations instead of the linearized Poisson–Boltzmann equation to accurately predict the axial variation in ion concentration along the microchannel. Results show that the interfacial zeta potential of the moving interface greatly impacts the velocity profile of the flow and can reverse its overall direction. The numerical results are validated by the analytical expressions, where both models predicted that flow could reverse its overall direction when the interfacial zeta potential of the oil–water is above a certain threshold value. Finally, this paper describes the electroviscous effect as well as the transient development of electrokinetic effects within the microchannel.


2014 ◽  
Vol 751 ◽  
pp. 184-215
Author(s):  
Liyan Yu ◽  
John Hinch

AbstractWe study the solitary wave solutions in a thin film of a power-law fluid coating a vertical fibre. Different behaviours are observed for shear-thickening and shear-thinning fluids. For shear-thickening fluids, the solitary waves are larger and faster when the reduced Bond number is smaller. For shear-thinning fluids, two branches of solutions exist for a certain range of the Bond number, where the solitary waves are larger and faster on one and smaller and slower on the other as the Bond number decreases. We carry out an asymptotic analysis for the large and fast-travelling solitary waves to explain how their speeds and amplitudes change with the Bond number. The analysis is then extended to examine the stability of the two branches of solutions for the shear-thinning fluids.


2010 ◽  
Vol 148-149 ◽  
pp. 58-70
Author(s):  
Qing Chang ◽  
Bin Wu Yang ◽  
Bi Gui Wei

The methods and devices which can be used to determine the wettability and zeta potential of filter medium were developed according to the principles of capillary rise and streaming potential respectively. Lipophilic Hydrophilic Ratio (LHR) was defined based on Washburn equation. LHR values and zeta potentials of some conmen filter media were measured respectively, and the oil removal efficiencies of these filter media were also tested. The result shows that the effect of wettability on oil removal efficiency is much greater than that of zeta potential in conmen condition. The oil removal efficiency mainly depends on LHR value of filter medium, not on zeta potential of filter medium.


2017 ◽  
Vol 826 ◽  
pp. 918-941 ◽  
Author(s):  
A. Bougouin ◽  
L. Lacaze ◽  
T. Bonometti

Experiments on the collapse of non-colloidal and neutrally buoyant particles suspended in a Newtonian fluid column are presented, in which the initial volume fraction of the suspension $\unicode[STIX]{x1D719}$, the viscosity of the interstitial fluid $\unicode[STIX]{x1D707}_{f}$, the diameter of the particles $d$ and the mixing protocol, i.e. the initial preparation of the suspension, are varied. The temporal evolution of the slumping current highlights two main regimes: (i) an inertial-dominated regime followed by (ii) a viscous-dominated regime. The inertial regime is characterized by a constant-speed slumping which is shown to scale as in the case of a classical inertial dam-break. The viscous-dominated regime is observed as a decreasing-speed phase of the front evolution. Lubrication models for Newtonian and power-law fluids describe most of situations encountered in this regime, which strongly depends on the suspension parameters. The temporal evolution of the propagating front is used to extract the rheological parameters of the fluid models. At the early stages of the viscous-dominated regime, a constant effective shear viscosity, referred to as an apparent Newtonian viscous regime, is found to depend only on $\unicode[STIX]{x1D719}$ and $\unicode[STIX]{x1D707}_{f}$ for each mixing protocol. The obtained values are shown to be well fitted by the Krieger–Dougherty model whose parameters involved, say a critical volume fraction $\unicode[STIX]{x1D719}_{m}$ and the exponent of divergence, depend on the mixing protocol, i.e. the microscale interaction between particles. On a longer time scale which depends on $\unicode[STIX]{x1D719}$, the front evolution is shown to slightly deviate from the apparent Newtonian model. In this apparent non-Newtonian viscous regime, the power-law model, indicating both shear-thinning and shear-thickening behaviours, is shown to be more appropriate to describe the front evolution. The present experiments indicate that the mixing protocol plays a crucial role in the selection of a shear-thinning or shear-thickening type of collapse, while the particle diameter $d$ and volume fraction $\unicode[STIX]{x1D719}$ play a significant role in the shear-thickening case. In all cases, the normalized effective consistency of the power-law fluid model is found to be a unique function of $\unicode[STIX]{x1D719}$. Finally, an apparent viscoplastic regime, characterized by a finite length spreading reached at finite time, is observed at high $\unicode[STIX]{x1D719}$. This regime is mostly observed for volume fractions larger than $\unicode[STIX]{x1D719}_{m}$ and up to a volume fraction $\unicode[STIX]{x1D719}_{M}$ close to the random close packing fraction at which the initial column remains undeformed on opening the gate.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
D. T. Luong ◽  
R. Sprik

Seismoelectric effects and streaming potentials play an important role in geophysical applications. The key parameter for those phenomena is the streaming potential coupling coefficient, which is, for example, dependent on the zeta potential of the interface of the porous rocks. Comparison of an existing theoretical model to experimental data sets from available published data for streaming potentials has been performed. However, the existing experimental data sets are based on samples with dissimilar fluid conductivity, pH of pore fluid, temperature, and sample compositions. All those dissimilarities may cause the observed deviations. To critically assess the models, we have carried out streaming potential measurement as a function of electrolyte concentration and temperature for a set of well-defined consolidated samples. The results show that the existing theoretical model is not in good agreement with the experimental observations when varying the electrolyte concentration, especially at low electrolyte concentration. However, if we use a modified model in which the zeta potential is considered to be constant over the electrolyte concentration, the model fits the experimental data well in a whole range of concentration. Also, for temperature dependence, the comparison shows that the theoretical model is not fully adequate to describe the experimental data but does describe correctly the increasing trend of the coupling coefficient as function of temperature.


Sign in / Sign up

Export Citation Format

Share Document