scholarly journals Ribbed bedforms on palaeo-ice stream beds resemble regular patterns of basal shear stress (‘traction ribs’) inferred from modern ice streams

2016 ◽  
Vol 62 (234) ◽  
pp. 696-713 ◽  
Author(s):  
CHRIS R. STOKES ◽  
MARTIN MARGOLD ◽  
TIMOTHY T. CREYTS

Rapidly-flowing ice streams are an important mechanism through which ice sheets lose mass, and much work has been focussed on elucidating the processes that increase or decrease their velocity. Recent work using standard inverse methods has inferred previously-unrecognised regular patterns of high basal shear stress (‘sticky spots’ >200 kPa) beneath a number of ice streams in Antarctica and Greenland, termed ‘traction ribs’. They appear at a scale intermediate between smaller ribbed moraines and much larger mega-ribs observed on palaeo-ice sheet beds, but it is unclear whether they have a topographic expression at the bed. Here, we report observations of rib-like bedforms from DEMs along palaeo-ice stream beds in western Canada that resemble both the pattern and dimensions of traction ribs. Their identification suggests that traction ribs may have a topographic expression that lies between, and partly overlaps with, ribbed moraines and much larger mega-ribs. These intermediate-sized bedforms support the notion of a ribbed bedform continuum. Their formation remains conjectural, but our observations from palaeo-ice streams, coupled with those from modern ice masses, suggest they are related to wave-like instabilities occurring in the coupled flow of ice and till and modulated by subglacial meltwater drainage. Their form and pattern may also involve glaciotectonism of subglacial sediments.

1979 ◽  
Vol 24 (90) ◽  
pp. 493-495
Author(s):  
T. J. Hughes

AbstractSize, shape, and surface albedo of former ice sheets are needed in order to model atmospheric circulation for the CLIMAP 18000 years B.P. experiment. Both the size and shape of an ice sheet depend on the hardness of ice and its coupling to bedrock. Ice hardness is controlled by ice temperature and fabric, which are not adequately described by any ice flow law. Ice–bed coupling is controlled by bed roughness and basal melt water, which are not adequately described by any ice sliding law. With these inadequacies in mind, we assumed equilibrium ice-sheet conditions 18000 years ago and combined the standard steady-state flow and sliding laws of ice with the equation of mass balance to obtain separate basal shear-stress variations along ice-sheet flow lines for a frozen bed when the flow law dominates and for a melted bed when the sliding law dominates. Theoretical basal shear-stress variations were then derived for freezing and melting beds on the assumption that separate melted areas of the bed had water films of constant thickness which expanded and merged for a melting bed but contracted and separated for a freezing bed. Theoretical basal shear-stress variations were also derived for ice streams along marine ice-sheet margins and ice lobes along terrestrial ice-sheet margins on the assumption that the entire area of their bed was wet so that further melting increased the water-layer thickness, which would then be decreased by freezing. Melting was assumed to continue to the grounding line of an ice stream and the minimum-slope surface inflection line of an ice lobe, where freezing began and continued to the ice-lobe terminus. Ice–bed uncoupling is complete at an ice-stream grounding line and maximized at an ice-lobe minimum-slope inflection line, so ice velocity and consequent generation of frictional heat were assumed to reach maxima across these lines. Theoretical basal shear-stress variations were derived for the zone of converging flow at the heads of ice streams and ice lobes, and from domes to saddles along the ice divide for both frozen and melted beds.


1979 ◽  
Vol 24 (90) ◽  
pp. 493-495 ◽  
Author(s):  
T. J. Hughes

Abstract Size, shape, and surface albedo of former ice sheets are needed in order to model atmospheric circulation for the CLIMAP 18000 years B.P. experiment. Both the size and shape of an ice sheet depend on the hardness of ice and its coupling to bedrock. Ice hardness is controlled by ice temperature and fabric, which are not adequately described by any ice flow law. Ice–bed coupling is controlled by bed roughness and basal melt water, which are not adequately described by any ice sliding law. With these inadequacies in mind, we assumed equilibrium ice-sheet conditions 18000 years ago and combined the standard steady-state flow and sliding laws of ice with the equation of mass balance to obtain separate basal shear-stress variations along ice-sheet flow lines for a frozen bed when the flow law dominates and for a melted bed when the sliding law dominates. Theoretical basal shear-stress variations were then derived for freezing and melting beds on the assumption that separate melted areas of the bed had water films of constant thickness which expanded and merged for a melting bed but contracted and separated for a freezing bed. Theoretical basal shear-stress variations were also derived for ice streams along marine ice-sheet margins and ice lobes along terrestrial ice-sheet margins on the assumption that the entire area of their bed was wet so that further melting increased the water-layer thickness, which would then be decreased by freezing. Melting was assumed to continue to the grounding line of an ice stream and the minimum-slope surface inflection line of an ice lobe, where freezing began and continued to the ice-lobe terminus. Ice–bed uncoupling is complete at an ice-stream grounding line and maximized at an ice-lobe minimum-slope inflection line, so ice velocity and consequent generation of frictional heat were assumed to reach maxima across these lines. Theoretical basal shear-stress variations were derived for the zone of converging flow at the heads of ice streams and ice lobes, and from domes to saddles along the ice divide for both frozen and melted beds.


Author(s):  
Ian Joughin ◽  
Jonathan L Bamber ◽  
Ted Scambos ◽  
Slawek Tulaczyk ◽  
Mark Fahnestock ◽  
...  

Using inverse methods constrained by recent satellite observations, we have produced a comprehensive estimate of the basal shear stress beneath the Filchner-Ronne ice streams. The inversions indicate that a weak bed (approx. 4–20 kPa) underlies much of these ice streams. Compared to the Ross ice streams, the distribution of weak subglacial till is more heterogeneous, with ‘sticky spots’ providing much of the resistance to flow. A weak bed beneath Recovery ice stream extends several hundred kilometres inland with flow. Along this ice stream, discrepancies between thickness measurements and flux estimates suggest the existence of a deep (−1400 m) trough not resolved by existing maps of subglacial topography. We hypothesize that the presence of this and other deep troughs is a major influence on this sector of the ice sheet that is not fully incorporated in current models of ice-sheet evolution.


2003 ◽  
Vol 36 ◽  
pp. 225-232 ◽  
Author(s):  
David G. Vaughan ◽  
Andrew M. Smith ◽  
P. Chandrika Nath ◽  
Emmanuel Le Meur

AbstractThe acoustic impedance of the subglacial material beneath 7.2 km profiles on four ice streams in Antarctica has been measured using a seismic technique. The ice streams span a wide range of dynamic conditions with flow rates of 35–464 m a–1. The acoustic impedance indicates that poorly lithified or dilated sedimentary material is ubiquitous beneath these ice streams. Meanacoustic impedance across each profile correlates well with basal shear stress and the slipperiness of the bed, indicating that acoustic impedance is a good diagnostic not only for the porosity of the subglacial material, but also for its dynamic state (deforming or non-deforming). Beneath two of the ice streams, lodged (non-deforming) and dilated (deforming) sediment coexist but their distribution is not obviously controlled by basal topography or ice thickness. Their distribution may be controlled by complex material properties or the deformation history. Beneath Rutford Ice Stream, lodged and dilated sediment coexist and are distributed in broad bands several kilometres wide, whileon Talutis Inlet there is considerable variability over much shorter distances; this may reflect differences in the mechanism of drainage beneath the ice streams. The material beneath the slow-moving Carlson Inlet is probably lodged but unlithified sediment; this is consistent with the hypothesis that Carlson Inlet was once a fast-flowing ice stream but is now in a stagnant phase, which could possibly be revivedby raised basal water content. The entire bed beneath fast-flowing Evans Ice Stream is dilated sediment.


2002 ◽  
Vol 48 (163) ◽  
pp. 552-558 ◽  
Author(s):  
Marjorie Schmeltz ◽  
Eric Rignot ◽  
Todd K. Dupont ◽  
Douglas R. MacAyeal

AbstractWe use a finite-element model of coupled ice-stream/ice-shelf flow to study the sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions. By tuning a softening coefficient of the ice along the glacier margins, and a basal friction coefficient controlling the distribution of basal shear stress underneath the ice stream, we are able to match model velocity to that observed with interferometric synthetic aperture radar (InSAR). We use the model to investigate the effect of small perturbations on ice flow. We find that a 5.5–13% reduction in our initial ice-shelf area increases the glacier velocity by 3.5–10% at the grounding line. The removal of the entire ice shelf increases the grounding-line velocity by > 70%. The changes in velocity associated with ice-shelf reduction are felt several tens of km inland. Alternatively, a 5% reduction in basal shear stress increases the glacier velocity by 13% at the grounding line. By contrast, softening of the glacier side margins would have to be increased a lot more to produce a comparable change in ice velocity. Hence, both the ice-shelf buttressing and the basal shear stress contribute significant resistance to the flow of Pine Island Glacier.


2021 ◽  
Author(s):  
Jean Vérité ◽  
Édouard Ravier ◽  
Olivier Bourgeois ◽  
Stéphane Pochat ◽  
Thomas Lelandais ◽  
...  

<p>Over the three last decades, great efforts have been undertaken by the glaciological community to characterize the behaviour of ice streams and better constrain the dynamics of ice sheets. Studies of modern ice stream beds reveal crucial information on ice-meltwater-till-bedrock interactions, but are restricted to punctual observations limiting the understanding of ice stream dynamics as a whole. Consequently, theoretical ice stream landsystems derived from geomorphological and sedimentological observations were developed to provide wider constraints on those interactions on palaeo-ice stream beds. Within these landsystems, the spatial distribution and formation processes of subglacial periodic bedforms transverse to the ice flow direction – ribbed bedforms – remain unclear. The purpose of this study is (i) to explore the conditions under which these ribbed bedforms develop and (ii) to constrain their spatial organisation along ice stream beds.  </p><p>We performed physical experiments with silicon putty (to simulate the ice), water (to simulate the meltwater) and sand (to simulate a soft sedimentary bed) to model the dynamics of ice streams and produce analog subglacial landsystems. We compare the results of these experiments with the distribution of ribbed bedforms on selected examples of palaeo-ice stream beds of the Laurentide Ice Sheet. Based on this comparison, we can draw several conclusions regarding the significance of ribbed bedforms in ice stream contexts:</p><ul><li>Ribbed bedforms tend to form where the ice flow undergoes high velocity gradients and the ice-bed interface is unlubricated. Where the ribs initiate, we hypothesize that high driving stresses generate high basal shear stresses, accommodated through bed deformation of the active uppermost part of the bed.</li> <li>Ribbed bedforms can develop subglacially from a flat sediment surface beneath shear margins (i.e., lateral ribbed bedforms) and stagnant lobes (i.e., submarginal ribbed bedforms) of ice streams, while they do not develop beneath surging lobes.</li> <li>The orientation of ribbed bedforms reflects the local stress state along the ice-bed interface, with transverse bedforms formed by compression beneath ice lobes and oblique bedforms formed by transgression below lateral shear margins.</li> <li>The development of ribbed bedforms where the ice-bed interface is unlubricated reveals distinctive types of discontinuous basal drainage systems below shear and lobe margins: linked-cavities and efficient meltwater channels respectively.</li> </ul><p>Ribbed bedforms could thus constitute convenient geomorphic markers for the reconstruction of palaeo-ice stream margins, palaeo-ice flow dynamics and palaeo-meltwater drainage characteristics.</p>


2014 ◽  
Vol 10 (5) ◽  
pp. 1817-1836 ◽  
Author(s):  
F. A. Ziemen ◽  
C. B. Rodehacke ◽  
U. Mikolajewicz

Abstract. In the standard Paleoclimate Modelling Intercomparison Project (PMIP) experiments, the Last Glacial Maximum (LGM) is modeled in quasi-equilibrium with atmosphere–ocean–vegetation general circulation models (AOVGCMs) with prescribed ice sheets. This can lead to inconsistencies between the modeled climate and ice sheets. One way to avoid this problem would be to model the ice sheets explicitly. Here, we present the first results from coupled ice sheet–climate simulations for the pre-industrial times and the LGM. Our setup consists of the AOVGCM ECHAM5/MPIOM/LPJ bidirectionally coupled with the Parallel Ice Sheet Model (PISM) covering the Northern Hemisphere. The results of the pre-industrial and LGM simulations agree reasonably well with reconstructions and observations. This shows that the model system adequately represents large, non-linear climate perturbations. A large part of the drainage of the ice sheets occurs in ice streams. Most modeled ice stream systems show recurring surges as internal oscillations. The Hudson Strait Ice Stream surges with an ice volume equivalent to about 5 m sea level and a recurrence interval of about 7000 yr. This is in agreement with basic expectations for Heinrich events. Under LGM boundary conditions, different ice sheet configurations imply different locations of deep water formation.


1999 ◽  
Vol 28 ◽  
pp. 23-32 ◽  
Author(s):  
Chris D. Clark

AbstractSubglacially-produced drift lineations provide spatially extensive evidence of ice flow that can be used to aid reconstructions of the evolution of former ice sheets. Such reconstructions, however, are highly sensitive to assumptions made about the glaciodynamic context of lineament generation; when during the glacial cycle and where within the ice sheet were they produced. A range of glaciodynamic contexts are explored which include: sheet-flow submarginally restricted; sheet-flow pervasive; sheet- flow patch; ice stream; and surge or re-advance. Examples of each are provided. The crux of deciphering the appropriate context is whether lineations were laid down time-trans-gressively or isochronously. It is proposed that spatial and morphometric characteristics of lineations, and their association with other landforms, can be used as objective criteria to help distinguish between these cases.A logically complete ice-sheet reconstruction must also account for the observed patches of older lineations and other relict surfaces and deposits that have survived erasure by subsequent ice flow. A range of potential preservation mechanisms are explored, including: cold- based ice; low basal-shear stresses; shallowing of the deforming layer; and basal uncoupling.


1993 ◽  
Vol 39 (133) ◽  
pp. 528-537 ◽  
Author(s):  
W. Jacobel Robert ◽  
M. Gades Anthony ◽  
L. Gottschling David ◽  
M. Hodge Steven ◽  
L. Wright David

AbstractLow-frequency surface-based radar-profiling experiments on Ice Streams Β and C, West Antarctica, have yielded high-resolution images which depict folding of the internal layers that can aid in the interpretation of ice-stream dynamics. Unlike folding seen in most earlier radar studies of ice sheets, the present structures have no relationship to bedrock topography and show tilting of their axial fold planes in the flow direction. Rather than being standing waves created by topography or local variations in basal shear stress, the data show that these folds originate upstream of the region of streaming flow and are advected into the ice streams. The mechanism for producing folds is hypothesized to be changes in the basal boundary conditions as the ice makes the transition from inland ice to ice-stream flow. Migration of this transition zone headward can then cause folds in the internal layering to be propagated down the ice streams.


1969 ◽  
Vol 8 (53) ◽  
pp. 207-213 ◽  
Author(s):  
J. F. Nye

Robin (1967) and Budd (1968, unpublished) have succeeded in connecting the variations in surface slope of an ice sheet with variations in the gradient of the longitudinal strain-rate. This paper tries to improve the theoretical basis of their work. By choice of a suitable coordinate system and suitable redefinition of the variables, Budd’s formula for the basal shear stress is derived with a minimum of restrictive assumptions. The resulting formula, containing the gradient of a longitudinal stress, is thought to be of high accuracy for the two-dimensional flow of cold ice sheets, and is valid for slopes of any magnitude.


Sign in / Sign up

Export Citation Format

Share Document