scholarly journals Acoustic impedance and basal shear stress beneath four Antarctic ice streams

2003 ◽  
Vol 36 ◽  
pp. 225-232 ◽  
Author(s):  
David G. Vaughan ◽  
Andrew M. Smith ◽  
P. Chandrika Nath ◽  
Emmanuel Le Meur

AbstractThe acoustic impedance of the subglacial material beneath 7.2 km profiles on four ice streams in Antarctica has been measured using a seismic technique. The ice streams span a wide range of dynamic conditions with flow rates of 35–464 m a–1. The acoustic impedance indicates that poorly lithified or dilated sedimentary material is ubiquitous beneath these ice streams. Meanacoustic impedance across each profile correlates well with basal shear stress and the slipperiness of the bed, indicating that acoustic impedance is a good diagnostic not only for the porosity of the subglacial material, but also for its dynamic state (deforming or non-deforming). Beneath two of the ice streams, lodged (non-deforming) and dilated (deforming) sediment coexist but their distribution is not obviously controlled by basal topography or ice thickness. Their distribution may be controlled by complex material properties or the deformation history. Beneath Rutford Ice Stream, lodged and dilated sediment coexist and are distributed in broad bands several kilometres wide, whileon Talutis Inlet there is considerable variability over much shorter distances; this may reflect differences in the mechanism of drainage beneath the ice streams. The material beneath the slow-moving Carlson Inlet is probably lodged but unlithified sediment; this is consistent with the hypothesis that Carlson Inlet was once a fast-flowing ice stream but is now in a stagnant phase, which could possibly be revivedby raised basal water content. The entire bed beneath fast-flowing Evans Ice Stream is dilated sediment.

1996 ◽  
Vol 23 ◽  
pp. 129-137 ◽  
Author(s):  
C. J. van der Veen ◽  
I. M. Whillans

A simple model is developed based on the notion that on active ice streams the resistance to flow is partitioned between basal drag and lateral drag. The relative roles of these sources of resistance is determined by a friction parameter that effectively describes the strength of the bed under the ice stream. Reduction in the basal strength is caused by meltwater production, taken proportional to the product of basal drag and ice speed. The width of the ice stream is governed by the balance between entrainment or erosion of ice from the slow-moving inter-stream ridges and advection from the ridges into the ice stream. Entrainment of ridge ice is parameterized as a function of the shear stress at the lateral margins, in one case proportional to the lateral shear stress and in the second case scaled to ice-stream width. In the first formulation, the model rapidly becomes unstable but, using the second formulation, a steady state is reached with lateral drag providing all or most of the resistance to flow. The results point to the great importance of achieving an understanding of entrainment. With the second model and a wide range of parameter values, there is no cyclic behavior, with rapid flow being followed by a quiescent phase.


1996 ◽  
Vol 23 ◽  
pp. 129-137 ◽  
Author(s):  
C. J. van der Veen ◽  
I. M. Whillans

A simple model is developed based on the notion that on active ice streams the resistance to flow is partitioned between basal drag and lateral drag. The relative roles of these sources of resistance is determined by a friction parameter that effectively describes the strength of the bed under the ice stream. Reduction in the basal strength is caused by meltwater production, taken proportional to the product of basal drag and ice speed. The width of the ice stream is governed by the balance between entrainment or erosion of ice from the slow-moving inter-stream ridges and advection from the ridges into the ice stream. Entrainment of ridge ice is parameterized as a function of the shear stress at the lateral margins, in one case proportional to the lateral shear stress and in the second case scaled to ice-stream width. In the first formulation, the model rapidly becomes unstable but, using the second formulation, a steady state is reached with lateral drag providing all or most of the resistance to flow. The results point to the great importance of achieving an understanding of entrainment. With the second model and a wide range of parameter values, there is no cyclic behavior, with rapid flow being followed by a quiescent phase.


1994 ◽  
Vol 20 ◽  
pp. 183-186 ◽  
Author(s):  
S. Anandakrishnan ◽  
R. B. Alley

Microearthquakes at the base of slow-moving Ice Stream C occur many times more frequently than at the base of fast-moving Ice Stream B. We suggest that the microearthquake source sites are so-called “sticky spots”, defined as limited zones of stronger Subglacial material interspersed within a weaker matrix. The fault-plane area of the microearthquakes (O(102m2)) is therefore a measure of the size of the sticky spots. The spatial density of the microearthquakes (O(10 km-2)) is a measure of the distribution of sticky spots.The average stress drop associated with these microearthquakes is consistent with an ice-stream bed model of weak subglacial till interspersed with stronger zones that support much or all of the basal shear stress. We infer a weak inter-sticky-spot material by the large distances (O(103m)), relative to fault radius, to which the microearthquake stress change is transmitted.


2016 ◽  
Vol 62 (234) ◽  
pp. 696-713 ◽  
Author(s):  
CHRIS R. STOKES ◽  
MARTIN MARGOLD ◽  
TIMOTHY T. CREYTS

Rapidly-flowing ice streams are an important mechanism through which ice sheets lose mass, and much work has been focussed on elucidating the processes that increase or decrease their velocity. Recent work using standard inverse methods has inferred previously-unrecognised regular patterns of high basal shear stress (‘sticky spots’ >200 kPa) beneath a number of ice streams in Antarctica and Greenland, termed ‘traction ribs’. They appear at a scale intermediate between smaller ribbed moraines and much larger mega-ribs observed on palaeo-ice sheet beds, but it is unclear whether they have a topographic expression at the bed. Here, we report observations of rib-like bedforms from DEMs along palaeo-ice stream beds in western Canada that resemble both the pattern and dimensions of traction ribs. Their identification suggests that traction ribs may have a topographic expression that lies between, and partly overlaps with, ribbed moraines and much larger mega-ribs. These intermediate-sized bedforms support the notion of a ribbed bedform continuum. Their formation remains conjectural, but our observations from palaeo-ice streams, coupled with those from modern ice masses, suggest they are related to wave-like instabilities occurring in the coupled flow of ice and till and modulated by subglacial meltwater drainage. Their form and pattern may also involve glaciotectonism of subglacial sediments.


Author(s):  
Ian Joughin ◽  
Jonathan L Bamber ◽  
Ted Scambos ◽  
Slawek Tulaczyk ◽  
Mark Fahnestock ◽  
...  

Using inverse methods constrained by recent satellite observations, we have produced a comprehensive estimate of the basal shear stress beneath the Filchner-Ronne ice streams. The inversions indicate that a weak bed (approx. 4–20 kPa) underlies much of these ice streams. Compared to the Ross ice streams, the distribution of weak subglacial till is more heterogeneous, with ‘sticky spots’ providing much of the resistance to flow. A weak bed beneath Recovery ice stream extends several hundred kilometres inland with flow. Along this ice stream, discrepancies between thickness measurements and flux estimates suggest the existence of a deep (−1400 m) trough not resolved by existing maps of subglacial topography. We hypothesize that the presence of this and other deep troughs is a major influence on this sector of the ice sheet that is not fully incorporated in current models of ice-sheet evolution.


1979 ◽  
Vol 24 (90) ◽  
pp. 493-495
Author(s):  
T. J. Hughes

AbstractSize, shape, and surface albedo of former ice sheets are needed in order to model atmospheric circulation for the CLIMAP 18000 years B.P. experiment. Both the size and shape of an ice sheet depend on the hardness of ice and its coupling to bedrock. Ice hardness is controlled by ice temperature and fabric, which are not adequately described by any ice flow law. Ice–bed coupling is controlled by bed roughness and basal melt water, which are not adequately described by any ice sliding law. With these inadequacies in mind, we assumed equilibrium ice-sheet conditions 18000 years ago and combined the standard steady-state flow and sliding laws of ice with the equation of mass balance to obtain separate basal shear-stress variations along ice-sheet flow lines for a frozen bed when the flow law dominates and for a melted bed when the sliding law dominates. Theoretical basal shear-stress variations were then derived for freezing and melting beds on the assumption that separate melted areas of the bed had water films of constant thickness which expanded and merged for a melting bed but contracted and separated for a freezing bed. Theoretical basal shear-stress variations were also derived for ice streams along marine ice-sheet margins and ice lobes along terrestrial ice-sheet margins on the assumption that the entire area of their bed was wet so that further melting increased the water-layer thickness, which would then be decreased by freezing. Melting was assumed to continue to the grounding line of an ice stream and the minimum-slope surface inflection line of an ice lobe, where freezing began and continued to the ice-lobe terminus. Ice–bed uncoupling is complete at an ice-stream grounding line and maximized at an ice-lobe minimum-slope inflection line, so ice velocity and consequent generation of frictional heat were assumed to reach maxima across these lines. Theoretical basal shear-stress variations were derived for the zone of converging flow at the heads of ice streams and ice lobes, and from domes to saddles along the ice divide for both frozen and melted beds.


1979 ◽  
Vol 24 (90) ◽  
pp. 493-495 ◽  
Author(s):  
T. J. Hughes

Abstract Size, shape, and surface albedo of former ice sheets are needed in order to model atmospheric circulation for the CLIMAP 18000 years B.P. experiment. Both the size and shape of an ice sheet depend on the hardness of ice and its coupling to bedrock. Ice hardness is controlled by ice temperature and fabric, which are not adequately described by any ice flow law. Ice–bed coupling is controlled by bed roughness and basal melt water, which are not adequately described by any ice sliding law. With these inadequacies in mind, we assumed equilibrium ice-sheet conditions 18000 years ago and combined the standard steady-state flow and sliding laws of ice with the equation of mass balance to obtain separate basal shear-stress variations along ice-sheet flow lines for a frozen bed when the flow law dominates and for a melted bed when the sliding law dominates. Theoretical basal shear-stress variations were then derived for freezing and melting beds on the assumption that separate melted areas of the bed had water films of constant thickness which expanded and merged for a melting bed but contracted and separated for a freezing bed. Theoretical basal shear-stress variations were also derived for ice streams along marine ice-sheet margins and ice lobes along terrestrial ice-sheet margins on the assumption that the entire area of their bed was wet so that further melting increased the water-layer thickness, which would then be decreased by freezing. Melting was assumed to continue to the grounding line of an ice stream and the minimum-slope surface inflection line of an ice lobe, where freezing began and continued to the ice-lobe terminus. Ice–bed uncoupling is complete at an ice-stream grounding line and maximized at an ice-lobe minimum-slope inflection line, so ice velocity and consequent generation of frictional heat were assumed to reach maxima across these lines. Theoretical basal shear-stress variations were derived for the zone of converging flow at the heads of ice streams and ice lobes, and from domes to saddles along the ice divide for both frozen and melted beds.


1994 ◽  
Vol 20 ◽  
pp. 183-186 ◽  
Author(s):  
S. Anandakrishnan ◽  
R. B. Alley

Microearthquakes at the base of slow-moving Ice Stream C occur many times more frequently than at the base of fast-moving Ice Stream B. We suggest that the microearthquake source sites are so-called “sticky spots”, defined as limited zones of stronger Subglacial material interspersed within a weaker matrix. The fault-plane area of the microearthquakes (O (102m2)) is therefore a measure of the size of the sticky spots. The spatial density of the microearthquakes (O (10 km-2)) is a measure of the distribution of sticky spots.The average stress drop associated with these microearthquakes is consistent with an ice-stream bed model of weak subglacial till interspersed with stronger zones that support much or all of the basal shear stress. We infer a weak inter-sticky-spot material by the large distances (O (103 m)), relative to fault radius, to which the microearthquake stress change is transmitted.


2002 ◽  
Vol 48 (163) ◽  
pp. 552-558 ◽  
Author(s):  
Marjorie Schmeltz ◽  
Eric Rignot ◽  
Todd K. Dupont ◽  
Douglas R. MacAyeal

AbstractWe use a finite-element model of coupled ice-stream/ice-shelf flow to study the sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions. By tuning a softening coefficient of the ice along the glacier margins, and a basal friction coefficient controlling the distribution of basal shear stress underneath the ice stream, we are able to match model velocity to that observed with interferometric synthetic aperture radar (InSAR). We use the model to investigate the effect of small perturbations on ice flow. We find that a 5.5–13% reduction in our initial ice-shelf area increases the glacier velocity by 3.5–10% at the grounding line. The removal of the entire ice shelf increases the grounding-line velocity by > 70%. The changes in velocity associated with ice-shelf reduction are felt several tens of km inland. Alternatively, a 5% reduction in basal shear stress increases the glacier velocity by 13% at the grounding line. By contrast, softening of the glacier side margins would have to be increased a lot more to produce a comparable change in ice velocity. Hence, both the ice-shelf buttressing and the basal shear stress contribute significant resistance to the flow of Pine Island Glacier.


2021 ◽  
pp. 1-15
Author(s):  
Pierce Hunter ◽  
Colin Meyer ◽  
Brent Minchew ◽  
Marianne Haseloff ◽  
Alan Rempel

Abstract Ice stream discharge responds to a balance between gravity, basal friction and lateral drag. Appreciable viscous heating occurs in shear margins between ice streams and adjacent slow-moving ice ridges, altering the temperature-dependent viscosity distribution that connects lateral drag to marginal strain rates and ice stream velocity. Warmer ice deforms more easily and accommodates faster flow, whereas cold ice supplied from ice ridges drives advective cooling that counteracts viscous heating. Here, we present a two-dimensional (three velocity component), steady-state model designed to explore the thermal controls on ice stream shear margins. We validate our treatment through comparison with observed velocities for Bindschadler Ice Stream and verify that calculated temperatures are consistent with results from previous studies. Sweeping through a parameter range that encompasses conditions representative of ice streams in Antarctica, we show that modeled steady-state velocity has a modest response to different choices in forcing up until temperate zones develop in the shear margins. When temperate zones are present, velocity is much more sensitive to changes in forcing. We identify key scalings for the emergence of temperate conditions in our idealized treatment that can be used to identify where thermo-mechanical feedbacks influence the evolution of the ice sheet.


Sign in / Sign up

Export Citation Format

Share Document