On the multifractal analysis of the covering number on the Galton–Watson tree

2019 ◽  
Vol 56 (01) ◽  
pp. 265-281
Author(s):  
Najmeddine Attia

AbstractWe consider, for t in the boundary of a Galton–Watson tree $(\partial \textsf{T})$, the covering number $(\textsf{N}_n(t))$ by the generation-n cylinder. For a suitable set I and sequence (sn), we almost surely establish the Hausdorff dimension of the set $\{ t \in \partial {\textsf{T}}:{{\textsf{N}}_n}(t) - nb \ {\sim} \ {s_n}\} $ for b ∈ I.

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Mourad Ben Slimane ◽  
Ines Ben Omrane ◽  
Moez Ben Abid ◽  
Borhen Halouani ◽  
Farouq Alshormani

The classical Hölder regularity is restricted to locally bounded functions and takes only positive values. The local Lp regularity covers unbounded functions and negative values. Nevertheless, it has the same apparent regularity in all directions. In the present work, we study a recent notion of directional local Lp regularity introduced by Jaffard. We provide its characterization by a supremum of a wide range oriented anisotropic Triebel wavelet coefficients and leaders. In addition, we deduce estimates on the Hausdorff dimension of the set of points where the directional local Lp regularity does not exceed a given value. The obtained results are illustrated by some examples of self-affine cascade functions.


Fractals ◽  
2016 ◽  
Vol 24 (04) ◽  
pp. 1650039 ◽  
Author(s):  
MOURAD BEN SLIMANE ◽  
ANOUAR BEN MABROUK ◽  
JAMIL AOUIDI

Mixed multifractal analysis for functions studies the Hölder pointwise behavior of more than one single function. For a vector [Formula: see text] of [Formula: see text] functions, with [Formula: see text], we are interested in the mixed Hölder spectrum, which is the Hausdorff dimension of the set of points for which each function [Formula: see text] has exactly a given value [Formula: see text] of pointwise Hölder regularity. We will conjecture a formula which relates the mixed Hölder spectrum to some mixed averaged wavelet quantities of [Formula: see text]. We will prove an upper bound valid for any vector of uniform Hölder functions. Then we will prove the validity of the conjecture for self-similar vectors of functions, quasi-self-similar vectors and their superpositions. These functions are written as the superposition of similar structures at different scales, reminiscent of some possible modelization of turbulence or cascade models. Their expressions look also like wavelet decompositions.


2010 ◽  
Vol 42 (01) ◽  
pp. 226-245
Author(s):  
Adam L. Kinnison ◽  
Peter Mörters

On the boundary of a Galton-Watson tree we can define thevisibility measureby splitting mass equally between the children of each vertex, and thebranching measureby splitting unit mass equally between all vertices in thenth generation and then lettingngo to infinity. The multifractal structure of each of these measures is well studied. In this paper we address the question of ajointmultifractal spectrum, i.e. we ask for the Hausdorff dimension of the boundary points whichsimultaneouslyhave an unusual local dimension for both these measures. The resulting two-parameter spectrum exhibits a number of surprising new features, among them the emergence of a swallowtail-shaped spectrum for the visibility measure in the presence of a nontrivial condition on the branching measure.


Fractals ◽  
2018 ◽  
Vol 26 (03) ◽  
pp. 1850030 ◽  
Author(s):  
YUFEI CHEN ◽  
MEIFENG DAI ◽  
XIAOQIAN WANG ◽  
YU SUN ◽  
WEIYI SU

For an infinite sequence [Formula: see text] of [Formula: see text] and [Formula: see text] with probability [Formula: see text] and [Formula: see text], we mainly study the multifractal analysis of one-dimensional biased walks. Let [Formula: see text] and [Formula: see text]. The Hausdorff and packing dimensions of the sets [Formula: see text] are [Formula: see text], which is the development of the theorem of Besicovitch [On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110 (1934) 321–330] on random walk, saying that: For any [Formula: see text], the set [Formula: see text] has Hausdorff dimension [Formula: see text].


2010 ◽  
Vol 42 (1) ◽  
pp. 226-245
Author(s):  
Adam L. Kinnison ◽  
Peter Mörters

On the boundary of a Galton-Watson tree we can define the visibility measure by splitting mass equally between the children of each vertex, and the branching measure by splitting unit mass equally between all vertices in the nth generation and then letting n go to infinity. The multifractal structure of each of these measures is well studied. In this paper we address the question of a joint multifractal spectrum, i.e. we ask for the Hausdorff dimension of the boundary points which simultaneously have an unusual local dimension for both these measures. The resulting two-parameter spectrum exhibits a number of surprising new features, among them the emergence of a swallowtail-shaped spectrum for the visibility measure in the presence of a nontrivial condition on the branching measure.


Nonlinearity ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 110-133
Author(s):  
Guanzhong Ma ◽  
Wenqiang Shen ◽  
Xiao Yao

Abstract In this paper, we establish a framework for the construction of Moran set driven by dynamics. Under this framework, we study the Hausdorff dimension of the generalized intrinsic level set with respect to the given ergodic measure in a class of non-uniformly hyperbolic interval maps with finitely many branches.


2016 ◽  
Vol 38 (3) ◽  
pp. 1168-1200
Author(s):  
HIROKI TAKAHASI

For a strongly dissipative Hénon-like map at the first bifurcation parameter at which the uniform hyperbolicity is destroyed by the formation of tangencies inside the limit set, we effect a multifractal analysis, i.e. decompose the set of non-wandering points on the unstable manifold into level sets of an unstable Lyapunov exponent, and give a partial description of the Lyapunov spectrum which encodes this decomposition. We derive a formula for the Hausdorff dimension of the level sets in terms of the entropy and unstable Lyapunov exponent of invariant probability measures, and show the continuity of the Lyapunov spectrum. We also show that the set of points for which the unstable Lyapunov exponents do not exist carries the full Hausdorff dimension.


2010 ◽  
Vol 10 (01) ◽  
pp. 53-75 ◽  
Author(s):  
YONG MOO CHUNG

We study the multifractal analysis for smooth dynamical systems in dimension one. It is given a characterization of the Hausdorff dimension of the level set obtained from the Birkhoff averages of a continuous function by the local dimensions of hyperbolic measures for a topologically mixing C2 map modeled by an abstract dynamical system. A characterization which corresponds to above is also given for the ergodic basins of invariant probability measures. And it is shown that the complement of the set of quasi-regular points carries full Hausdorff dimension.


2015 ◽  
Vol 35 (8) ◽  
pp. 2559-2586 ◽  
Author(s):  
GODOFREDO IOMMI ◽  
THOMAS JORDAN

In this paper we prove a multifractal formalism of Birkhoff averages for interval maps with countably many branches. Furthermore, we prove that under certain assumptions the Birkhoff spectrum is real analytic. We also show that new phenomena occur; indeed, the spectrum can be constant or it can have points where it is not analytic. Conditions for these to happen are obtained. Applications of these results to number theory are also given. Finally, we compute the Hausdorff dimension of the set of points for which the Birkhoff average is infinite.


2009 ◽  
Vol 29 (1) ◽  
pp. 73-109 ◽  
Author(s):  
AI-HUA FAN ◽  
LING-MIN LIAO ◽  
BAO-WEI WANG ◽  
JUN WU

AbstractAssume that x∈[0,1) admits its continued fraction expansion x=[a1(x),a2(x),…]. The Khintchine exponent γ(x) of x is defined by $\gamma (x):=\lim _{n\to \infty }({1}/{n}) \sum _{j=1}^n \log a_j(x)$ when the limit exists. The Khintchine spectrum dim Eξ is studied in detail, where Eξ:={x∈[0,1):γ(x)=ξ}(ξ≥0) and dim denotes the Hausdorff dimension. In particular, we prove the remarkable fact that the Khintchine spectrum dim Eξ, as a function of $\xi \in [0, +\infty )$, is neither concave nor convex. This is a new phenomenon from the usual point of view of multifractal analysis. Fast Khintchine exponents defined by $\gamma ^{\varphi }(x):=\lim _{n\to \infty }({1}/({\varphi (n)}))\sum _{j=1}^n \log a_j(x)$ are also studied, where φ(n) tends to infinity faster than n does. Under some regular conditions on φ, it is proved that the fast Khintchine spectrum dim ({x∈[0,1]:γφ(x)=ξ}) is a constant function. Our method also works for other spectra such as the Lyapunov spectrum and the fast Lyapunov spectrum.


Sign in / Sign up

Export Citation Format

Share Document