scholarly journals SOME MODEL THEORY OF GUARDED NEGATION

2018 ◽  
Vol 83 (04) ◽  
pp. 1307-1344
Author(s):  
VINCE BÁRÁNY ◽  
MICHAEL BENEDIKT ◽  
BALDER TEN CATE

AbstractThe Guarded Negation Fragment (GNFO) is a fragment of first-order logic that contains all positive existential formulas, can express the first-order translations of basic modal logic and of many description logics, along with many sentences that arise in databases. It has been shown that the syntax of GNFO is restrictive enough so that computational problems such as validity and satisfiability are still decidable. This suggests that, in spite of its expressive power, GNFO formulas are amenable to novel optimizations. In this article we study the model theory of GNFO formulas. Our results include effective preservation theorems for GNFO, effective Craig Interpolation and Beth Definability results, and the ability to express the certain answers of queries with respect to a large class of GNFO sentences within very restricted logics.

1979 ◽  
Vol 44 (2) ◽  
pp. 129-146 ◽  
Author(s):  
John Cowles

In recent years there has been a proliferation of logics which extend first-order logic, e.g., logics with infinite sentences, logics with cardinal quantifiers such as “there exist infinitely many…” and “there exist uncountably many…”, and a weak second-order logic with variables and quantifiers for finite sets of individuals. It is well known that first-order logic has a limited ability to express many of the concepts studied by mathematicians, e.g., the concept of a wellordering. However, first-order logic, being among the simplest logics with applications to mathematics, does have an extensively developed and well understood model theory. On the other hand, full second-order logic has all the expressive power needed to do mathematics, but has an unworkable model theory. Indeed, the search for a logic with a semantics complex enough to say something, yet at the same time simple enough to say something about, accounts for the proliferation of logics mentioned above. In this paper, a number of proposed strengthenings of first-order logic are examined with respect to their relative expressive power, i.e., given two logics, what concepts can be expressed in one but not the other?For the most part, the notation is standard. Most of the notation is either explained in the text or can be found in the book [2] of Chang and Keisler. Some notational conventions used throughout the text are listed below: the empty set is denoted by ∅.


Author(s):  
Shawn Hedman

We show that first-order logic, like propositional logic, has both completeness and compactness. We prove a countable version of these theorems in Section 4.1. We further show that these two properties have many useful consequences for first-order logic. For example, compactness implies that if a set of first-order sentences has an infinite model, then it has arbitrarily large infinite models. To fully understand completeness, compactness, and their consequences we must understand the nature of infinite numbers. In Section 4.2, we return to our discussion of infinite numbers that we left in Section 2.5. This digression allows us to properly state and prove completeness and compactness along with the Upward and Downward Löwenhiem–Skolem theorems. These are the four central theorems of first-order logic referred to in the title of Section 4.3. We discuss consequences of these theorems in Sections 4.4–4.6. These consequences include amalgamation theorems, preservation theorems, and the Beth Definability theorem. Each of the properties studied in this chapter restrict the language of first-order logic. First-order logic is, in some sense, weak. There are many concepts that cannot be expressed in this language. For example, whereas first-order logic can express “there exist n elements” for any finite n, it cannot express “there exist countably many elements.” Any sentence having a countable model necessarily has uncountable models. As we previously mentioned, this follows from compactness. In the final section of this chapter, using graphs as an illustration, we discuss the limitations of first-order logic. Ironically, the weakness of first-order logic makes it the fruitful logic that it is. The properties discussed in this chapter, and the limitations that follow from them, make possible the subject of model theory. All formulas in this chapter are first-order unless stated otherwise. Many of the properties of first-order logic, including completeness and compactness, are consequences of the following fact: Every model has a theory and every theory has a model. Recall that a set of sentences is a “theory” if it is consistent (i.e. if we cannot derive a contradiction). “Every theory has a model” means that if a set of sentences is consistent, then it is satisfiable.


Author(s):  
Paul Wild ◽  
Lutz Schröder

Modal description logics feature modalities that capture dependence of knowledge on parameters such as time, place, or the information state of agents. E.g., the logic S5-ALC combines the standard description logic ALC with an S5-modality that can be understood as an epistemic operator or as representing (undirected) change. This logic embeds into a corresponding modal first-order logic S5-FOL. We prove a modal characterization theorem for this embedding, in analogy to results by van Benthem and Rosen relating ALC to standard first-order logic: We show that S5-ALC with only local roles is, both over finite and over unrestricted models, precisely the bisimulation-invariant fragment of S5-FOL, thus giving an exact description of the expressive power of S5-ALC with only local roles.


Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2019 ◽  
Vol 29 (8) ◽  
pp. 1311-1344 ◽  
Author(s):  
Lauri T Hella ◽  
Miikka S Vilander

Abstract We propose a new version of formula size game for modal logic. The game characterizes the equivalence of pointed Kripke models up to formulas of given numbers of modal operators and binary connectives. Our game is similar to the well-known Adler–Immerman game. However, due to a crucial difference in the definition of positions of the game, its winning condition is simpler, and the second player does not have a trivial optimal strategy. Thus, unlike the Adler–Immerman game, our game is a genuine two-person game. We illustrate the use of the game by proving a non-elementary succinctness gap between bisimulation invariant first-order logic $\textrm{FO}$ and (basic) modal logic $\textrm{ML}$. We also present a version of the game for the modal $\mu $-calculus $\textrm{L}_\mu $ and show that $\textrm{FO}$ is also non-elementarily more succinct than $\textrm{L}_\mu $.


1985 ◽  
Vol 50 (3) ◽  
pp. 773-780
Author(s):  
Mitchell Spector

AbstractWe initiate the study of model theory in the absence of the Axiom of Choice, using the Axiom of Determinateness as a powerful substitute. We first show that, in this context, is no more powerful than first-order logic. The emphasis then turns to upward Löwenhein-Skolem theorems; ℵ1 is the Hanf number of first-order logic, of , and of a strong fragment of , The main technical innovation is the development of iterated ultrapowers using infinite supports; this requires an application of infinite-exponent partition relations. All our theorems can be proven from hypotheses weaker than AD.


2021 ◽  
pp. 14-52
Author(s):  
Cian Dorr ◽  
John Hawthorne ◽  
Juhani Yli-Vakkuri

This chapter presents the system of classical higher-order modal logic which will be employed throughout this book. Nothing more than a passing familiarity with classical first-order logic and standard systems of modal logic is presupposed. We offer some general remarks about the kind of commitment involved in endorsing this logic, and motivate some of its more non-standard features. We also discuss how talk about possible worlds can be represented within the system.


2011 ◽  
pp. 24-43
Author(s):  
J. Bruijn

This chapter introduces a number of formal logical languages which form the backbone of the Semantic Web. They are used for the representation of both ontologies and rules. The basis for all languages presented in this chapter is the classical first-order logic. Description logics is a family of languages which represent subsets of first-order logic. Expressive description logic languages form the basis for popular ontology languages on the Semantic Web. Logic programming is based on a subset of first-order logic, namely Horn logic, but uses a slightly different semantics and can be extended with non-monotonic negation. Many Semantic Web reasoners are based on logic programming principles and rule languages for the Semantic Web based on logic programming are an ongoing discussion. Frame Logic allows object-oriented style (frame-based) modeling in a logical language. RuleML is an XML-based syntax consisting of different sublanguages for the exchange of specifications in different logical languages over the Web.


2002 ◽  
Vol 8 (3) ◽  
pp. 380-403 ◽  
Author(s):  
Eric Rosen

Model theory is concerned mainly, although not exclusively, with infinite structures. In recent years, finite structures have risen to greater prominence, both within the context of mainstream model theory, e.g., in work of Lachlan, Cherlin, Hrushovski, and others, and with the advent of finite model theory, which incorporates elements of classical model theory, combinatorics, and complexity theory. The purpose of this survey is to provide an overview of what might be called the model theory of finite structures. Some topics in finite model theory have strong connections to theoretical computer science, especially descriptive complexity theory (see [26, 46]). In fact, it has been suggested that finite model theory really is, or should be, logic for computer science. These connections with computer science will, however, not be treated here.It is well-known that many classical results of ‘infinite model theory’ fail over the class of finite structures, including the compactness and completeness theorems, as well as many preservation and interpolation theorems (see [35, 26]). The failure of compactness in the finite, in particular, means that the standard proofs of many theorems are no longer valid in this context. At present, there is no known example of a classical theorem that remains true over finite structures, yet must be proved by substantially different methods. It is generally concluded that first-order logic is ‘badly behaved’ over finite structures.From the perspective of expressive power, first-order logic also behaves badly: it is both too weak and too strong. Too weak because many natural properties, such as the size of a structure being even or a graph being connected, cannot be defined by a single sentence. Too strong, because every class of finite structures with a finite signature can be defined by an infinite set of sentences. Even worse, every finite structure is defined up to isomorphism by a single sentence. In fact, it is perhaps because of this last point more than anything else that model theorists have not been very interested in finite structures. Modern model theory is concerned largely with complete first-order theories, which are completely trivial here.


2004 ◽  
Vol 10 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Jouko Väänänen

§1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness. Any set of sentences of cardinality ≤ κ, every finite subset of which has a model, has itself a model. Löwenheim-Skolem Theorem down to κ. If a sentence of the logic has a model, it has a model of cardinality at most κ. Interpolation Property. If ϕ and ψ are sentences such that ⊨ ϕ → Ψ, then there is θ such that ⊨ ϕ → θ, ⊨ θ → Ψ and the vocabulary of θ is the intersection of the vocabularies of ϕ and Ψ.Lindstrom's famous theorem characterized first order logic as the maximal ℵ0-compact logic with Downward Löwenheim-Skolem Theorem down to ℵ0. With his new concept of absolute logics Barwise was able to get similar characterizations of infinitary languages Lκω. But hopes were quickly frustrated by difficulties arising left and right, and other areas of model theory came into focus, mainly stability theory. No new characterizations of logics comparable to the early characterization of first order logic given by Lindström and of infinitary logic by Barwise emerged. What was first called soft model theory turned out to be as hard as hard model theory.


Sign in / Sign up

Export Citation Format

Share Document