scholarly journals ITERATING SYMMETRIC EXTENSIONS

2019 ◽  
Vol 84 (1) ◽  
pp. 123-159 ◽  
Author(s):  
ASAF KARAGILA

AbstractThe notion of a symmetric extension extends the usual notion of forcing by identifying a particular class of names which forms an intermediate model of $ZF$ between the ground model and the generic extension, and often the axiom of choice fails in these models. Symmetric extensions are generally used to prove choiceless consistency results. We develop a framework for iterating symmetric extensions in order to construct new models of $ZF$. We show how to obtain some well-known and lesser-known results using this framework. Specifically, we discuss Kinna–Wagner principles and obtain some results related to their failure.

2019 ◽  
Vol 84 (1) ◽  
pp. 320-342
Author(s):  
OMER BEN-NERIA

AbstractWe study the notion of tightly stationary sets which was introduced by Foreman and Magidor in [8]. We obtain two consistency results showing that certain sequences of regular cardinals ${\langle {\kappa _n}\rangle _{n < \omega }}$ can have the property that in some generic extension, every ground-model sequence of fixed-cofinality stationary sets ${S_n} \subseteq {\kappa _n}$ is tightly stationary. The results are obtained using variations of the short-extenders forcing method.


1983 ◽  
Vol 48 (1) ◽  
pp. 39-52 ◽  
Author(s):  
G. P. Monro

AbstractLet ZF denote Zermelo-Fraenkel set theory (without the axiom of choice), and let M be a countable transitive model of ZF. The method of forcing extends M to another model M[G] of ZF (a “generic extension”). If the axiom of choice holds in M it also holds in M[G], that is, the axiom of choice is preserved by generic extensions. We show that this is not true for many weak forms of the axiom of choice, and we derive an application to Boolean toposes.


1976 ◽  
Vol 41 (2) ◽  
pp. 465-466
Author(s):  
John Lake

The set theory AFC was introduced by Perlis in [2] and he noted that it both includes and is stronger than Ackermann's set theory. We shall give a relative consistency result for AFC.AFC is obtained from Ackermann's set theory (see [2]) by replacing Ackermann's set existence schema with the schema(where ϕ, ψ, are ∈-formulae, x is not in ψ, w is not in ϕ, y is y1, …, yn, z is z1, …, zm and all free variables are shown) and adding the axiom of choice for sets. Following [1], we say that λ is invisible in Rκ if λ < κ and we haveholding for every ∈-formula θ which has exactly two free variables and does not involve u or υ. The existence of a Ramsey cardinal implies the existence of cardinals λ and κ with λ invisible in Rκ, and Theorem 1.13 of [1] gives some further indications about the relative strength of the notion of invisibility.Theorem. If there are cardinals λ and κ with λ invisible in Rκ, then AFC is consistent.Proof. Suppose that λ is invisible in Rκ and we will show that 〈Rκ, Rλ, ∈〉 ⊧ AFC (Rλ being the interpretation of V, of course).


Author(s):  
Asaf Karagila ◽  
Philipp Schlicht

Cohen’s first model is a model of Zermelo–Fraenkel set theory in which there is a Dedekind-finite set of real numbers, and it is perhaps the most famous model where the Axiom of Choice fails. We force over this model to add a function from this Dedekind-finite set to some infinite ordinal κ . In the case that we force the function to be injective, it turns out that the resulting model is the same as adding κ Cohen reals to the ground model, and that we have just added an enumeration of the canonical Dedekind-finite set. In the case where the function is merely surjective it turns out that we do not add any reals, sets of ordinals, or collapse any Dedekind-finite sets. This motivates the question if there is any combinatorial condition on a Dedekind-finite set A which characterises when a forcing will preserve its Dedekind-finiteness or not add new sets of ordinals. We answer this question in the case of ‘Adding a Cohen subset’ by presenting a varied list of conditions each equivalent to the preservation of Dedekind-finiteness. For example, 2 A is extremally disconnected, or [ A ] < ω is Dedekind-finite.


2017 ◽  
Vol 82 (2) ◽  
pp. 489-509
Author(s):  
PAUL LARSON ◽  
JINDŘICH ZAPLETAL

AbstractWe develop technology for investigation of natural forcing extensions of the model $L\left( \mathbb{R} \right)$ which satisfy such statements as “there is an ultrafilter” or “there is a total selector for the Vitali equivalence relation”. The technology reduces many questions about ZF implications between consequences of the Axiom of Choice to natural ZFC forcing problems.


2016 ◽  
Vol 81 (3) ◽  
pp. 814-832 ◽  
Author(s):  
JULIA KNIGHT ◽  
ANTONIO MONTALBÁN ◽  
NOAH SCHWEBER

AbstractIn this paper, we investigate connections between structures present in every generic extension of the universe V and computability theory. We introduce the notion of generic Muchnik reducibility that can be used to compare the complexity of uncountable structures; we establish basic properties of this reducibility, and study it in the context of generic presentability, the existence of a copy of the structure in every extension by a given forcing. We show that every forcing notion making ω2 countable generically presents some countable structure with no copy in the ground model; and that every structure generically presentable by a forcing notion that does not make ω2 countable has a copy in the ground model. We also show that any countable structure ${\cal A}$ that is generically presentable by a forcing notion not collapsing ω1 has a countable copy in V, as does any structure ${\cal B}$ generically Muchnik reducible to a structure ${\cal A}$ of cardinality ℵ1. The former positive result yields a new proof of Harrington’s result that counterexamples to Vaught’s conjecture have models of power ℵ1 with Scott rank arbitrarily high below ω2. Finally, we show that a rigid structure with copies in all generic extensions by a given forcing has a copy already in the ground model.


2003 ◽  
Vol 68 (4) ◽  
pp. 1091-1108 ◽  
Author(s):  
Andrea Cantini

AbstractWe combine a variety of constructive methods (including forcing, realizability, asymmetric interpretation), to obtain consistency results concerning combinatory logic with extensionality and (forms of) the axiom of choice.


1985 ◽  
Vol 50 (2) ◽  
pp. 502-509
Author(s):  
Marco Forti ◽  
Furio Honsell

T. Jech [4] and M. Takahashi [7] proved that given any partial ordering R in a model of ZFC there is a symmetric submodel of a generic extension of where R is isomorphic to the injective ordering on a set of cardinals.The authors raised the question whether the injective ordering of cardinals can be universal, i.e. whether the following axiom of “cardinal universality” is consistent:CU. For any partially ordered set (X, ≼) there is a bijection f:X → Y such that(i.e. x ≼ y iff ∃g: f(x) → f(y) injective). (See [1].)The consistency of CU relative to ZF0 (Zermelo-Fraenkel set theory without foundation) is proved in [2], but the transfer method of Jech-Sochor-Pincus cannot be applied to obtain consistency with full ZF (including foundation), since CU apparently is not boundable.In this paper the authors define a model of ZF + CU as a symmetric submodel of a generic extension obtained by forcing “à la Easton” with a class of conditions which add κ generic subsets to any regular cardinal κ of a ground model satisfying ZF + V = L.


1980 ◽  
Vol 45 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Mitchell Spector

The usefulness of measurable cardinals in set theory arises in good part from the fact that an ultraproduct of wellfounded structures by a countably complete ultrafilter is wellfounded. In the standard proof of the wellfoundedness of such an ultraproduct, one first shows, without any use of the axiom of choice, that the ultraproduct contains no infinite descending chains. One then completes the proof by noting that, assuming the axiom of choice, any partial ordering with no infinite descending chain is wellfounded. In fact, the axiom of dependent choices (a weakened form of the axiom of choice) suffices. It is therefore of interest to ask whether some use of the axiom of choice is needed in order to prove the wellfoundedness of such ultraproducts or whether, on the other hand, their wellfoundedness can be proved in ZF alone. In Theorem 1, we show that the axiom of choice is needed for the proof (assuming the consistency of a strong partition relation). Theorem 1 also contains some related consistency results concerning infinite exponent partition relations. We then use Theorem 1 to show how to change the cofinality of a cardinal κ satisfying certain partition relations to any regular cardinal less than κ, while introducing no new bounded subsets of κ. This generalizes a theorem of Prikry [5].


1978 ◽  
Vol 43 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Petr Štěpánek

We shall describe Boolean extensions of models of set theory with the axiom of choice in which cardinals are collapsed by mappings definable from parameters in the ground model. In particular, starting from the constructible universe, we get Boolean extensions in which constructible cardinals are collapsed by ordinal definable sets.Let be a transitive model of set theory with the axiom of choice. Definability of sets in the generic extensions of is closely related to the automorphisms of the corresponding Boolean algebra. In particular, if G is an -generic ultrafilter on a rigid complete Boolean algebra C, then every set in [G] is definable from parameters in . Hence if B is a complete Boolean algebra containing a set of forcing conditions to collapse some cardinals in , it suffices to construct a rigid complete Boolean algebra C, in which B is completely embedded. If G is as above, then [G] satisfies “every set is -definable” and the inner model [G ∩ B] contains the collapsing mapping determined by B. To complete the result, it is necessary to give some conditions under which every cardinal from [G ∩ B] remains a cardinal in [G].The absolutness is granted for every cardinal at least as large as the saturation of C. To keep the upper cardinals absolute, it often suffices to construct C with the same saturation as B. It was shown in [6] that this is always possible, namely, that every Boolean algebra can be completely embedded in a rigid complete Boolean algebra with the same saturation.


Sign in / Sign up

Export Citation Format

Share Document