scholarly journals Lyα Emitting Galaxies as a Probe of Reionisation

Author(s):  
Mark Dijkstra

AbstractThe Epoch of Reionization (EoR) represents a milestone in the evolution of our Universe. Star-forming galaxies that existed during the EoR likely emitted a significant fraction ( ~ 5 − 40%) of their bolometric luminosity as Lyα line emission. However, neutral intergalactic gas that existed during the EoR was opaque to Lyα emission that escaped from galaxies during this epoch, which makes it difficult to observe. The neutral intergalactic medium (IGM) may thus reveal itself by suppressing the Lyα flux from background galaxies. Interestingly, a ‘sudden’ reduction in the observed Lyα flux has now been observed in galaxies at z > 6. This review contains a detailed summary of Lyα radiative processes: I describe (i) the main Lyα emission processes, including collisional-excitation & recombination (and derive the origin of the famous factor ‘0.68’), and (ii) basic radiative transfer concepts, including e.g. partially coherent scattering, frequency diffusion, resonant versus wing scattering, optically thick versus ‘extremely’ optically thick (static/outflowing/collapsing) media, and multiphase media. Following this review, I derive expressions for the Gunn-Peterson optical depth of the IGM during (inhomogeneous) reionisation and post-reionisation. I then describe why current observations appear to require a very rapid evolution of volume-averaged neutral fraction of hydrogen in the context of realistic inhomogeneous reionisation models, and discuss uncertainties in this interpretation. Finally, I describe how existing & futures surveys and instruments can help reduce these uncertainties, and allow us to fully exploit Lyα emitting galaxies as a probe of the EoR.

2020 ◽  
Vol 496 (3) ◽  
pp. 2821-2835 ◽  
Author(s):  
Tie Liu ◽  
Neal J Evans ◽  
Kee-Tae Kim ◽  
Paul F Goldsmith ◽  
Sheng-Yuan Liu ◽  
...  

ABSTRACT We report studies of the relationships between the total bolometric luminosity (Lbol or LTIR) and the molecular line luminosities of J = 1 − 0 transitions of H13CN, H13CO+, HCN, and HCO+ with data obtained from ACA observations in the ‘ATOMS’ survey of 146 active Galactic star-forming regions. The correlations between Lbol and molecular line luminosities $L^{\prime }_{\rm mol}$ of the four transitions all appear to be approximately linear. Line emission of isotopologues shows as large scatters in Lbol–$L^{\prime }_{\rm mol}$ relations as their main line emission. The log(Lbol/$L^{\prime }_{\rm mol}$) for different molecular line tracers have similar distributions. The Lbol-to-$L^{\prime }_{\rm mol}$ ratios do not change with galactocentric distances (RGC) and clump masses (Mclump). The molecular line luminosity ratios (HCN-to-HCO+, H13CN-to-H13CO+, HCN-to-H13CN, and HCO+-to-H13CO+) all appear constant against Lbol, dust temperature (Td), Mclump, and RGC. Our studies suggest that both the main lines and isotopologue lines are good tracers of the total masses of dense gas in Galactic molecular clumps. The large optical depths of main lines do not affect the interpretation of the slopes in star formation relations. We find that the mean star formation efficiency (SFE) of massive Galactic clumps in the ‘ATOMS’ survey is reasonably consistent with other measures of the SFE for dense gas, even those using very different tracers or examining very different spatial scales.


2019 ◽  
Vol 489 (1) ◽  
pp. L53-L57 ◽  
Author(s):  
Shengqi Yang ◽  
Anthony R Pullen ◽  
Eric R Switzer

ABSTRACT C ii is one of the brightest emission lines from star-forming galaxies and is an excellent tracer for star formation. Recent work measured the C ii emission line amplitude for redshifts 2 < z < 3.2 by cross-correlating Planck High Frequency Instrument emission maps with tracers of overdensity from the Baryon Oscillation Spectroscopic Sky Survey, finding ${I}_{{\text C}\,\rm {\small II}}=6.6^{+5.0}_{-4.8}\times {10}^{4}$ Jy sr−1 at $95\,{\text{per cent}}$ confidence level. In this paper, we present a refinement of this earlier work by improving the mask weighting in each of the Planck bands and the precision in the covariance matrix. We report a detection of excess emission in the 545 GHz Planck band separate from the cosmic infrared background (CIB) present in the 353–857 GHz Planck bands. This excess is consistent with redshifted C ii emission, in which case we report $b_{{\text C} \,\rm {\small II}}I_{{\text C} \,\rm {\small II}} =2.0^{+1.2}_{-1.1}\times 10^5$ Jy sr−1 at $95\ {\text {per cent}}$ confidence level, which strongly favours many collisional excitation models of C ii emission. Our detection shows strong evidence for a model with a non-zero C ii parameter, though line intensity mapping observations at high spectral resolution will be needed to confirm this result.


2012 ◽  
Vol 426 (1) ◽  
pp. 258-275 ◽  
Author(s):  
M. Aravena ◽  
C. L. Carilli ◽  
M. Salvato ◽  
M. Tanaka ◽  
L. Lentati ◽  
...  

2019 ◽  
Vol 15 (S352) ◽  
pp. 316-316
Author(s):  
Peter Senchyna

AbstractThe recent detections of high-ionization nebular line emission from species including CIV in a number of z > 6 galaxies have highlighted substantial deficiencies in our understanding of metal poor stars. Prominent nebular CIV has never been detected in purely star-forming systems locally, and the massive star models used to model this emission in photoionization codes have not been empirically calibrated below the metallicity of the SMC (20% solar). As a result, we are presently entirely unprepared to correctly interpret nebular emission from metal-poor stars observed with JWST and ALMA in the reionization era. We present results from a multi-pronged ongoing local ultraviolet/optical observation campaign with HST/COS, Keck/ESI, and MMT designed to address this issue by locating and characterizing stellar populations capable of powering such high-ionization emission. This work has already demonstrated that strong nebular CIV can be powered by extremely metal-poor (< 10% solar) massive stars, indicating that we may already have evidence of such low-metallicity populations in the reionization era. However, CIV at the equivalent widths detected at z > 6 remains elusive locally, potentially in part due to the relative paucity of known nearby galaxies at these metallicities with massive stellar populations comparable to those in z > 6 systems. We present a new technique to locate such nearby galaxies, and results from optical follow-up which indicate that a substantial population of highly star- forming metal-poor galaxies likely resides just below the detection limits of previous large spectroscopic surveys.


1997 ◽  
Vol 182 ◽  
pp. 111-120
Author(s):  
R. Liseau ◽  
T. Giannini ◽  
B. Nisini ◽  
P. Saraceno ◽  
L. Spinoglio ◽  
...  

Full Iso-Lws spectral scans between about 45 to 190 μm of 17 individual HH objects in 7 star forming regions have revealed essentially only [O I] 63 μm line emission, implying that the Fircooling of these objects is totally dominated by this line alone. In this case, J-shock models can be used to determine the mass loss rates of the HH exciting sources. These mass loss rates are in reasonably good agreement with those estimated for the accompanying CO flows, providing first observational evidence that HH and molecular flows are driven by the same agent. The Lmech – Lbol relation, based on our results with the Lws, implies that young stellar objects of lower mass are loosing mass at relatively higher rates than their more massive counterparts.


2019 ◽  
Vol 626 ◽  
pp. A23 ◽  
Author(s):  
D. Cormier ◽  
N. P. Abel ◽  
S. Hony ◽  
V. Lebouteiller ◽  
S. C. Madden ◽  
...  

The sensitive infrared telescopes, Spitzer and Herschel, have been used to target low-metallicity star-forming galaxies, allowing us to investigate the properties of their interstellar medium (ISM) in unprecedented detail. Interpretation of the observations in physical terms relies on careful modeling of those properties. We have employed a multiphase approach to model the ISM phases (H II region and photodissociation region) with the spectral synthesis code Cloudy. Our goal is to characterize the physical conditions (gas densities, radiation fields, etc.) in the ISM of the galaxies from the Herschel Dwarf Galaxy Survey. We are particularly interested in correlations between those physical conditions and metallicity or star-formation activity. Other key issues we have addressed are the contribution of different ISM phases to the total line emission, especially of the [C II]157 μm line, and the characterization of the porosity of the ISM. We find that the lower-metallicity galaxies of our sample tend to have higher ionization parameters and galaxies with higher specific star-formation rates have higher gas densities. The [C II] emission arises mainly from PDRs and the contribution from the ionized gas phases is small, typically less than 30% of the observed emission. We also find a correlation – though with scatter – between metallicity and both the PDR covering factor and the fraction of [C II] from the ionized gas. Overall, the low metal abundances appear to be driving most of the changes in the ISM structure and conditions of these galaxies, and not the high specific star-formation rates. These results demonstrate in a quantitative way the increase of ISM porosity at low metallicity. Such porosity may be typical of galaxies in the young Universe.


1999 ◽  
Vol 190 ◽  
pp. 67-73 ◽  
Author(s):  
Mónica Rubio

The molecular gas content in the Magellanic Clouds has been studied, with different spatial coverage and resolution, through obervations of CO(1-0) line emission. In the LMC and the SMC the molecular gas is dominated by clouds whose properties are different from those of their Galactic counterparts. The relation between the intensity of CO emission and molecular hydrogen column density, or the conversion factor X, is different than that of molecular clouds in our Galaxy and depends on the ambient physical conditions. Studying the molecular gas through observations in the H2 emission line may prove an alternative way to determine the molecular content associated with star forming regions in the Magellanic Clouds. In particular, results obtained towards 30 Doradus in the LMC are presented.


2001 ◽  
Vol 205 ◽  
pp. 224-227
Author(s):  
Jean L. Turner

Subarcsecond radio and infrared observations reveal a class of luminous, obscured, optically thick HII regions associated with extremely large young clusters in nearby starburst galaxies. VLA images show bright radio nebulae with ne ∼ 104 cm−3, densities characteristic of young Galactic compact HII regions. Excitation of the nebulae requires the presence of several thousand O stars within regions of 1-10 pc extent, corresponding to clusters containing 105–106 stars. The compact nebulae are also bright in the mid-infrared, and can for significant fractions of not only the total IR luminosity, but also the total bolometric luminosity, of the parent galaxies. The prototype for these “supernebulae” is the large, obscured cluster in the dwarf galaxy NGC 5253.


2020 ◽  
Vol 499 (2) ◽  
pp. 1788-1794
Author(s):  
J Wagg ◽  
M Aravena ◽  
D Brisbin ◽  
I Valtchanov ◽  
C Carilli ◽  
...  

ABSTRACT We present Herschel–PACS spectroscopy of four main-sequence star-forming galaxies at z ∼ 1.5. We detect [OI]63 μm line emission in BzK-21000 at z = 1.5213, and measure a line luminosity, $L_{\rm [O\, {\small I}]63\, \mu m} = (3.9\pm 0.7)\times 10^9$ L⊙. Our PDR modelling of the interstellar medium in BzK-21000 suggests a UV radiation field strength, G ∼ 320G0, and gas density, n ∼ 1800 cm−3, consistent with previous LVG modelling of the molecular CO line excitation. The other three targets in our sample are individually undetected in these data, and we perform a spectral stacking analysis which yields a detection of their average emission and an [O i]63 μm line luminosity, $L_{\rm [O\, {\small I}]63\, \mu m} = (1.1\pm 0.2)\times 10^9$ L⊙. We find that the implied luminosity ratio, $L_{\rm [O\, {\small I}]63\, \mu m}/L_{\rm IR}$, of the undetected BzK-selected star-forming galaxies broadly agrees with that of low-redshift star-forming galaxies, while BzK-21000 has a similar ratio to that of a dusty star-forming galaxy at z ∼ 6. The high [O i]63 μm line luminosities observed in BzK-21000 and the z ∼ 1−3 dusty and sub-mm luminous star-forming galaxies may be associated with extended reservoirs of low density, cool neutral gas.


2018 ◽  
Vol 617 ◽  
pp. A45 ◽  
Author(s):  
N. Schneider ◽  
M. Röllig ◽  
R. Simon ◽  
H. Wiesemeyer ◽  
A. Gusdorf ◽  
...  

The central area (40″  × 40″) of the bipolar nebula S106 was mapped in the [O I] line at 63.2 μm (4.74 THz) with high angular (6″) and spectral (0.24 MHz) resolution, using the GREAT heterodyne receiver on board SOFIA. The spatial and spectral emission distribution of [O I] is compared to emission in the CO 16 →15, [C II] 158 μm, and CO 11 →10 lines, mm-molecular lines, and continuum. The [O I] emission is composed of several velocity components in the range from –30 to 25 km s−1. The high-velocity blue- and red-shifted emission (v = −30 to –9 km s−1 and 8 to 25 km s−1) can be explained as arising from accelerated photodissociated gas associated with a dark lane close to the massive binary system S106 IR, and from shocks caused by the stellar wind and/or a disk–envelope interaction. At velocities from –9 to –4 km s−1 and from 0.5 to 8 km s−1 line wings are observed in most of the lines that we attribute to cooling in photodissociation regions (PDRs) created by the ionizing radiation impinging on the cavity walls. The velocity range from –4 to 0.5 km s−1 is dominated by emission from the clumpy molecular cloud, and the [O I], [C II], and high-J CO lines are excited in PDRs on clump surfaces that are illuminated by the central stars. Modelling the line emission in the different velocity ranges with the KOSMA-τ code constrains a radiation field χ of a few times 104 and densities n of a few times 104 cm−3. Considering self-absorption of the [O I] line results in higher densities (up to 106 cm−3) only for the gas component seen at high blue- and red velocities. We thus confirm the scenario found in other studies that the emission of these lines can be explained by a two-phase PDR, but attribute the high-density gas to the high-velocity component only. The dark lane has a mass of ~275 M⊙ and shows a velocity difference of ~1.4 km s−1 along its projected length of ~1 pc, determined from H13CO+ 1 →0 mapping. Its nature depends on the geometry and can be interpreted as a massive accretion flow (infall rate of ~2.5 × 10−4 M⊙ yr−1), or the remains of it, linked to S106 IR/FIR. The most likely explanation is that the binary system is at a stage of its evolution where gas accretion is counteracted by the stellar winds and radiation, leading to the very complex observed spatial and kinematic emission distribution of the various tracers.


Sign in / Sign up

Export Citation Format

Share Document