scholarly journals USER NEED-ORIENTED CONCEPT DEVELOPMENT OF AUTONOMOUS VEHICLES

2021 ◽  
Vol 1 ◽  
pp. 3349-3358
Author(s):  
Ferdinand Schockenhoff ◽  
Adrian König ◽  
Maximilian Zähringer ◽  
Markus Lienkamp

AbstractVehicle concept development is a domain that has applied and detailed its process over decades. The megatrends of the 21st century of “automation” and “sharing” influence the vehicle concept in such a manner that this well-running process needs an update. The vehicle itself and the customer of the vehicle are changing and therefore the components of the vehicle and the input variables of the useroriented design of the vehicle concept must be changed as well. We present a development process for autonomous vehicle concepts to address these challenges. We are therefore analyzing the current definition of a vehicle concept and its development process. Based on a literature review of a selection of common design methodologies, we update this definition for autonomous vehicle concepts and present a development process that presents design concepts of autonomous vehicle in a user need oriented way. This includes the sharing of models since user needs could be fulfilled by more than one vehicle concept. We believe that the presented process can be a starting point for vehicle concept development of the 21st century.

Systems ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 25
Author(s):  
Ferdinand Schockenhoff ◽  
Maximilian Zähringer ◽  
Matthias Brönner ◽  
Markus Lienkamp

The megatrends of individualization and sharing will dramatically change our consumer behavior. The needs of a product’s users will be central input for its development. Current development processes are not suitable for this product development; thus, we propose a combination of a genetic algorithm and a fuzzy system for user-centered development. We execute our new methodological approach on the example of autonomous vehicle concepts to demonstrate its implementation and functionality. The genetic algorithm minimizes the required number of vehicle concepts to satisfy the mobility needs of a user group, and the fuzzy system transfers user needs into vehicle-related properties, which are currently input for vehicle concept development. To present this method, we use a typical family and their potential mobility behavior. Our method optimizes their minimal number of vehicle concepts to satisfy all mobility needs and derives the properties of the vehicle concepts. By integrating our method into the entire vehicle concept development process, autonomous vehicles can be designed user-centered in the context of the megatrends of individualization and sharing. In summary, our method enables us to derive an optimized number of products for qualitatively described, heterogeneous user needs and determine their product-related properties.


2021 ◽  
Vol 1 ◽  
pp. 701-710
Author(s):  
Adrian König ◽  
Patrick Neuhaus ◽  
Koch Alexander ◽  
Schockenhoff Ferdinand ◽  
Hafemann Philipp ◽  
...  

AbstractVehicle doors have barely changed in recent decades, and nor has the car. Since autonomous driving will lead to changes in vehicles and how they are used, their doors will also have to be rethought. In the project UNICARagil, researchers from several universities in Germany design and build four prototypes of driverless and autonomous vehicles, which are developed based on a new and modular architecture. As part of this, we developed a concept including a prototype of an automated door system. In this paper, we present our concept development process adapted for door systems of autonomous vehicles. Based on the vehicle concept development process, it should help researchers and engineers to select and design new door concepts in an early phase. At the end, by means of an example, we present the prototype of our door concept as well as a boarding user study we carried out. This study helps evaluate and improve the boarding comfort of future door concepts.


2021 ◽  
Vol 1 ◽  
pp. 2369-2378
Author(s):  
Adrian König ◽  
Daniel Telschow ◽  
Lorenzo Nicoletti ◽  
Markus Lienkamp

AbstractAutonomous driving will not just change vehicles themselves, but also the entire concept of mobility. New business models and the expansion of individual mobility to new groups of society are merely examples of possible impact. In order to create optimal vehicles for new technologies right from the start, vehicle concept optimization helps to find suitable solutions from numerous possible variations. The package as part of a vehicle concept is currently focused on passenger cars with steering wheels and pedals. Therefore, a new method is needed to plan the package of driverless and autonomous vehicles. In this paper, we present a possible method that separates the vehicle into the interior and the front and rear wagon. This way, different seating layouts can be considered and evaluated in terms of package efficiency. In the results, we check the plausibility by rebuilding a current battery electric vehicle (BEV) and, by way of example, show the variation of the gear angle and different seating layouts, and the resulting package efficiency.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5053 ◽  
Author(s):  
Saba Arshad ◽  
Muhammad Sualeh ◽  
Dohyeong Kim ◽  
Dinh Van Nam ◽  
Gon-Woo Kim

In recent years, research and development of autonomous driving technology have gained much interest. Many autonomous driving frameworks have been developed in the past. However, building a safely operating fully functional autonomous driving framework is still a challenge. Several accidents have been occurred with autonomous vehicles, including Tesla and Volvo XC90, resulting in serious personal injuries and death. One of the major reasons is the increase in urbanization and mobility demands. The autonomous vehicle is expected to increase road safety while reducing road accidents that occur due to human errors. The accurate sensing of the environment and safe driving under various scenarios must be ensured to achieve the highest level of autonomy. This research presents Clothoid, a unified framework for fully autonomous vehicles, that integrates the modules of HD mapping, localization, environmental perception, path planning, and control while considering the safety, comfort, and scalability in the real traffic environment. The proposed framework enables obstacle avoidance, pedestrian safety, object detection, road blockage avoidance, path planning for single-lane and multi-lane routes, and safe driving of vehicles throughout the journey. The performance of each module has been validated in K-City under multiple scenarios where Clothoid has been driven safely from the starting point to the goal point. The vehicle was one of the top five to successfully finish the autonomous vehicle challenge (AVC) in the Hyundai AVC.


2020 ◽  
Vol 10 (11) ◽  
pp. 3946 ◽  
Author(s):  
Ferdinand Schockenhoff ◽  
Hannes Nehse ◽  
Markus Lienkamp

Driving maneuvers try to objectify user needs regarding the driving dynamics for a vehicle concept. As autonomous vehicles will not be driven by people, the driving style that merges the individual aspects of driving dynamics, like user comfort, will be part of the vehicle concept itself. New driving maneuvers are, therefore, necessary to objectify the driving style of autonomous vehicle concepts with all its interdependencies relating to the individual aspects. This paper presents a methodology to design such driving maneuvers and includes a pilot study and a user study. As an example, the methodology was applied to the parameters of user comfort and travel time. The driven maneuvers resulted in statistical equations to objectify the interdependencies of these two aspects. Finally, this paper provides an outlook for needed maneuvers in order to tackle the entire driving style with its multidimensional facets.


Author(s):  
Ganesh Sethuraman ◽  
Phi Robert Tran ◽  
Aybike Ongel ◽  
Markus Lienkamp ◽  
Pongsathorn Raksincharoensak

The demand for autonomous electric public transport is increasing globally. New vehicle models and variants are increasing the development complexity and hence the overall development time. Therefore, there is a requirement for a vehicle-packaging tool that can translate user inputs into an optimised vehicle package and can be visualised instantly. The aim of this paper is to develop a parametric tool for designing different concepts for electric autonomous buses. The scope of application is intended in the early phase of the vehicle development process to enable a fast and efficient creation of a flexible bus concept. Through a graphical user interface (GUI), the user is able to size and select all the required components for the autonomous vehicle concepts. The vehicle specification is initiated by selection of one of the three classes of vehicle, the desired number of passengers and then the bus interior’s seat arrangement design. An appropriate powertrain and chassis will then automatically be configured in the next steps. The HVAC simulation allows for the design of different components of the refrigeration circuit to ensure proper cabin temperature. For evaluating the concept, the energy consumption is analysed through simulations, and an estimated initial cost of vehicle concepts and individual systems completes the concept. A spider chart summarises all characteristics and offers an overview of the vehicle concept, providing the possibility to compare with other concepts simultaneously. The tool can create 9600 different bus concepts and provides interfaces for expansion.


Author(s):  
Charlie Ranscombe ◽  
Jacob Rodda ◽  
Mark Johnson

AbstractThe prospect of autonomous vehicles and associated technologies has disrupted traditional modes of vehicle operation and ownership. This requires automotive designers to shift their focus from designing vehicle form to consider the design of transport experiences. As such, there is a need to explore how best to support automotive designers in communicating user experiences (UX) alongside the physical design of vehicles. This paper presents an industry case study conducted with Ford Design Asia Pacific to assess the embodiment of UX in early concepts. Attributes of generalised model for UX are mapped to designers' storyboard illustration for the experience of an advanced concept for an autonomous vehicle interior. Results show how a mix of captions, sketches of users and contextual features illustrate different attributes of user experience. From findings we conclude firstly, the need to develop a toolkit to help designers communicate descriptions of as yet designed interactions. We also conclude that sketching contextual features of experience can provide a starting point to develop aspects of UX that can be used to differentiate and identify the Ford brand.


Author(s):  
Andrea CAPRA ◽  
Ana BERGER ◽  
Daniela SZABLUK ◽  
Manuela OLIVEIRA

An accurate understanding of users' needs is essential for the development of innovative products. This article presents an exploratory method of user centered research in the context of the design process of technological products, conceived from the demands of a large information technology company. The method is oriented - but not restricted - to the initial stages of the product development process, and uses low-resolution prototypes and simulations of interactions, allowing users to imagine themselves in a future context through fictitious environments and scenarios in the ambit of ideation. The method is effective in identifying the requirements of the experience related to the product’s usage and allows rapid iteration on existing assumptions and greater exploration of design concepts that emerge throughout the investigation.


Author(s):  
Mhafuzul Islam ◽  
Mashrur Chowdhury ◽  
Hongda Li ◽  
Hongxin Hu

Vision-based navigation of autonomous vehicles primarily depends on the deep neural network (DNN) based systems in which the controller obtains input from sensors/detectors, such as cameras, and produces a vehicle control output, such as a steering wheel angle to navigate the vehicle safely in a roadway traffic environment. Typically, these DNN-based systems in the autonomous vehicle are trained through supervised learning; however, recent studies show that a trained DNN-based system can be compromised by perturbation or adverse inputs. Similarly, this perturbation can be introduced into the DNN-based systems of autonomous vehicles by unexpected roadway hazards, such as debris or roadblocks. In this study, we first introduce a hazardous roadway environment that can compromise the DNN-based navigational system of an autonomous vehicle, and produce an incorrect steering wheel angle, which could cause crashes resulting in fatality or injury. Then, we develop a DNN-based autonomous vehicle driving system using object detection and semantic segmentation to mitigate the adverse effect of this type of hazard, which helps the autonomous vehicle to navigate safely around such hazards. We find that our developed DNN-based autonomous vehicle driving system, including hazardous object detection and semantic segmentation, improves the navigational ability of an autonomous vehicle to avoid a potential hazard by 21% compared with the traditional DNN-based autonomous vehicle driving system.


Sign in / Sign up

Export Citation Format

Share Document