Regularity results for the 2D critical Oldroyd-B model in the corotational case

2019 ◽  
Vol 150 (4) ◽  
pp. 1871-1913
Author(s):  
Zhuan Ye

AbstractThis paper studies the regularity results of classical solutions to the two-dimensional critical Oldroyd-B model in the corotational case. The critical case refers to the full Laplacian dissipation in the velocity or the full Laplacian dissipation in the non-Newtonian part of the stress tensor. Whether or not their classical solutions develop finite time singularities is a difficult problem and remains open. The object of this paper is two-fold. Firstly, we establish the global regularity result to the case when the critical case occurs in the velocity and a logarithmic dissipation occurs in the non-Newtonian part of the stress tensor. Secondly, when the critical case occurs in the non-Newtonian part of the stress tensor, we first present many interesting global a priori bounds, then establish a conditional global regularity in terms of the non-Newtonian part of the stress tensor. This criterion comes naturally from our approach to obtain a global L∞-bound for the vorticity ω.

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Xucheng Huang ◽  
Zhaoyang Shang ◽  
Na Zhang

Abstract In this paper, we consider the initial boundary value problem of two-dimensional isentropic compressible Boussinesq equations with constant viscosity and thermal diffusivity in a square domain. Based on the time-independent lower-order and time-dependent higher-order a priori estimates, we prove that the classical solution exists globally in time provided the initial mass $\|\rho _{0}\|_{L^{1}}$ ∥ ρ 0 ∥ L 1 of the fluid is small. Here, we have no small requirements for the initial velocity and temperature.


2020 ◽  
Vol 23 (5) ◽  
pp. 1416-1430 ◽  
Author(s):  
Simone Creo ◽  
Maria Rosaria Lancia ◽  
Alexander I. Nazarov

Abstract We consider parabolic nonlocal Venttsel’ problems in polygonal and piecewise smooth two-dimensional domains and study existence, uniqueness and regularity in (anisotropic) weighted Sobolev spaces of the solution. The nonlocal term can be regarded as a regional fractional Laplacian on the boundary. The regularity results deeply rely on a priori estimates, obtained via the so-called Munchhausen trick, and sophisticated extension theorem for anisotropic weighted Sobolev spaces.


1971 ◽  
Vol 5 (3) ◽  
pp. 315-320 ◽  
Author(s):  
Neil S. Trudinger

Strongly differentiable solutions of the minimal surface equation are shown to be classical solutions and consequently locally analytic. A global regularity result is also proved.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Mert Besken ◽  
Jan de Boer ◽  
Grégoire Mathys

Abstract We discuss some general aspects of commutators of local operators in Lorentzian CFTs, which can be obtained from a suitable analytic continuation of the Euclidean operator product expansion (OPE). Commutators only make sense as distributions, and care has to be taken to extract the right distribution from the OPE. We provide explicit computations in two and four-dimensional CFTs, focusing mainly on commutators of components of the stress-tensor. We rederive several familiar results, such as the canonical commutation relations of free field theory, the local form of the Poincaré algebra, and the Virasoro algebra of two-dimensional CFT. We then consider commutators of light-ray operators built from the stress-tensor. Using simplifying features of the light sheet limit in four-dimensional CFT we provide a direct computation of the BMS algebra formed by a specific set of light-ray operators in theories with no light scalar conformal primaries. In four-dimensional CFT we define a new infinite set of light-ray operators constructed from the stress-tensor, which all have well-defined matrix elements. These are a direct generalization of the two-dimensional Virasoro light-ray operators that are obtained from a conformal embedding of Minkowski space in the Lorentzian cylinder. They obey Hermiticity conditions similar to their two-dimensional analogues, and also share the property that a semi-infinite subset annihilates the vacuum.


Robotica ◽  
2000 ◽  
Vol 18 (3) ◽  
pp. 299-303 ◽  
Author(s):  
Carl-Henrik Oertel

Machine vision-based sensing enables automatic hover stabilization of helicopters. The evaluation of image data, which is produced by a camera looking straight to the ground, results in a drift free autonomous on-board position measurement system. No additional information about the appearance of the scenery seen by the camera (e.g. landmarks) is needed. The technique being applied is a combination of the 4D-approach with two dimensional template tracking of a priori unknown features.


Author(s):  
M. Bukenov ◽  
Ye. Mukhametov

This paper considers the numerical implementation of two-dimensional thermoviscoelastic waves. The elastic collision of an aluminum cylinder with a two-layer plate of aluminum and iron is considered. In work [1] the difference schemes and algorithm of their realization are given. The most complete reviews of the main methods of calculation of transients in deformable solids can be found in [2, 3, 4], which also indicates the need and importance of generalized studies on the comparative evaluation of different methods and identification of the areas of their most rational application. In the analysis and physical interpretation of numerical results in this work it is also useful to use a priori information about the qualitative behavior of the solution and all kinds of information about the physics of the phenomena under study. Here is the stage of evolution of contact resistance of collision – plate, stress profile.


2018 ◽  
Vol 149 (04) ◽  
pp. 979-994 ◽  
Author(s):  
Daomin Cao ◽  
Wei Dai

AbstractIn this paper, we are concerned with the following bi-harmonic equation with Hartree type nonlinearity $$\Delta ^2u = \left( {\displaystyle{1 \over { \vert x \vert ^8}}* \vert u \vert ^2} \right)u^\gamma ,\quad x\in {\open R}^d,$$where 0 < γ ⩽ 1 and d ⩾ 9. By applying the method of moving planes, we prove that nonnegative classical solutions u to (𝒫γ) are radially symmetric about some point x0 ∈ ℝd and derive the explicit form for u in the Ḣ2 critical case γ = 1. We also prove the non-existence of nontrivial nonnegative classical solutions in the subcritical cases 0 < γ < 1. As a consequence, we also derive the best constants and extremal functions in the corresponding Hardy-Littlewood-Sobolev inequalities.


Author(s):  
D. Breit ◽  
A. Cianchi ◽  
L. Diening ◽  
S. Schwarzacher

AbstractAn optimal first-order global regularity theory, in spaces of functions defined in terms of oscillations, is established for solutions to Dirichlet problems for the p-Laplace equation and system, with the right-hand side in divergence form. The exact mutual dependence among the regularity of the solution, of the datum on the right-hand side, and of the boundary of the domain in these spaces is exhibited. A comprehensive formulation of our results is given in terms of Campanato seminorms. New regularity results in customary function spaces, such as Hölder, $$\text {BMO}$$ BMO and $${{\,\mathrm{VMO}\,}}$$ VMO spaces, follow as a consequence. Importantly, the conclusions are new even in the linear case when $$p=2$$ p = 2 , and hence the differential operator is the plain Laplacian. Yet in this classical linear setting, our contribution completes and augments the celebrated Schauder theory in Hölder spaces. A distinctive trait of our results is their sharpness, which is demonstrated by a family of apropos examples.


Sign in / Sign up

Export Citation Format

Share Document