High-Resolution AMS14C Dates for the Par-Tee Site (35CLT20) and Prehistoric Whale Hunting on the Oregon Coast

Radiocarbon ◽  
2016 ◽  
Vol 58 (2) ◽  
pp. 397-405 ◽  
Author(s):  
Gabriel M Sanchez ◽  
Jon M Erlandson ◽  
Brendan J Culleton ◽  
Douglas J Kennett ◽  
Torben C Rick

AbstractEvidence for aboriginal whale hunting, long thought to be a practice limited to Northwest Coast tribes in northern Washington and British Columbia’s Vancouver Island, was previously reported at the Par-Tee site on the Oregon coast between about cal AD 620 and 990. An age estimate for a humpback whale phalanx with an embedded elk bone harpoon point was based on radiocarbon dates on charcoal not directly associated with the whale bone. We present high-resolution accelerator mass spectrometry (AMS)14C dates for purified bone collagen extracted directly from the whale phalanx and embedded harpoon point. A calibrated date for the harpoon point places the whale hunting event between about cal AD 430 and 550. The apparent14C age of the whale bone is estimated to be 220±3714C yr older than the marine model age at that time, consistent with values from the eastern Pacific. These new dates suggest that whale hunting took place on the Oregon coast as much as 200–500 yr earlier than previously reported and more than a millennium before historic contact in the region. Our research highlights the significance of museum collections and high-resolution AMS14C dating for addressing a variety of issues related to ancient archaeological sites and cultures.

Radiocarbon ◽  
2015 ◽  
Vol 57 (5) ◽  
pp. 755-763 ◽  
Author(s):  
Mirjana Roksandic ◽  
William Mark Buhay ◽  
Yadira Chinique de Armas ◽  
Roberto Rodríguez Suárez ◽  
Matthew C Peros ◽  
...  

Twelve accelerator mass spectrometry (AMS) radiocarbon dates from the shell-matrix site of Canímar Abajo (Matanzas, Cuba) are reported. Eleven were obtained directly from human bone collagen in burials and one was obtained from charcoal recovered from a burial context. The site stratigraphy presents two episodes of burial activity separated by a shell midden layer. The AMS dates fall into two compact clusters that correlate remarkably well with the stratigraphy. The older burial dates to between 1380–800 cal BC (2σ) and the younger one to between cal AD 360–950 (2σ). The AMS dates are compared to eight conventional 14C dates previously obtained on shell and charcoal. One of the conventional dates on charcoal (5480–5380 cal BC; 2σ) has been reported as the oldest 14C date in the Caribbean region; its context and reliability are clarified. The suite of AMS dates provides one of the most reliable chronometric dating of a cultural context during this timeframe in Cuba. The correlation of 14C and stratigraphy establishes a solid chronology for investigating the important economic and ritual features of Canímar Abajo.


Radiocarbon ◽  
2005 ◽  
Vol 47 (2) ◽  
pp. 235-241 ◽  
Author(s):  
Soren Blau ◽  
Vadim Yagodin

Recent osteological analyses of archaeological human skeletal remains from the Ust'-Yurt Plateau, Uzbekistan, provided the opportunity to obtain samples for radiocarbon dating. The results of 18 accelerator mass spectrometry (AMS) dates are presented in this paper and provide the first absolute dates for late prehistoric and early historic archaeological sites in Uzbekistan. The AMS dates suggest that most sites are earlier than have been traditionally thought based on relative dating using artifact typologies.


Radiocarbon ◽  
2013 ◽  
Vol 55 (2) ◽  
pp. 698-708 ◽  
Author(s):  
Anat Marom ◽  
James S O McCullagh ◽  
Thomas F G Higham ◽  
Robert E M Hedges

Dating of the amino acid hydroxyproline from bone collagen has been shown to produce accurate and reliable radiocarbon dates. This article presents further application of the method demonstrating it can be used to obtain dates for both low-collagen and contaminated bones, extending the capability of 14C dating archaeological bone from conventional limits imposed by alternative pretreatment methods. The method therefore has the potential for significantly benefiting the accelerator mass spectrometry (AMS) dating community in the 14C dating of archaeological bone.


Radiocarbon ◽  
2021 ◽  
pp. 1-16
Author(s):  
Anders Fischer ◽  
Jesper Olsen

ABSTRACT The Nekselø Wickerwork provides an unusually solid estimate on the marine reservoir age in the Holocene. The basis for this result is a 5200-year-old fish weir, built of hazel wood with a brief biological age of its own. Oysters settled on this construction. They had lived only for a short number of years when the fence capsized and was covered in mud and the mollusks suffocated. Based on the difference in radiocarbon (14C) age between accelerator mass spectrometry (AMS) samples of oyster shells and wood, respectively, the marine reservoir age for this site is estimated to 273 ± 18 14C years. Re-evaluations of previously produced data from geological and archaeological sites of Holocene date in the Danish archipelago indicate marine reservoir ages in the same order as that of the Wickerwork. Consequently, we recommend the use of the new value, rather than the ca. 400 14C years hitherto favored, when correcting for the dietary induced reservoir effect in radiocarbon dates of humans and animals from the Late Mesolithic and Early Neolithic periods of this region.


Radiocarbon ◽  
2014 ◽  
Vol 56 (1) ◽  
pp. 305-311 ◽  
Author(s):  
Torben C Rick ◽  
Gregory A Henkes

Fifteen accelerator mass spectrometry (AMS) radiocarbon dates obtained on small subsections of archaeological and historical Crassostrea virginica (eastern oyster) shells provide a means to test for intrashell variability in 14C content in late Holocene Chesapeake Bay mollusks. Although salinity and temperature vary considerably throughout the year, the Chesapeake Bay generally lacks the strong coastal upwelling present in the eastern Pacific where intrashell 14C variability is significant. Intrashell variability in Chesapeake Bay C. virginica is between ∼60–100 14C yr, considerably smaller than the 120–530 14C yr ranges noted for shells from strong upwelling zones. As a precaution, we follow Culleton et al. (2006) and argue that large subsamples of shells across multiple growth increments are ideal for AMS 14C dating of mollusks to offset potential issues of intrashell 14C variability.


Radiocarbon ◽  
2017 ◽  
Vol 59 (6) ◽  
pp. 1771-1778 ◽  
Author(s):  
Mitsuru Okuno ◽  
Pavel Izbekov ◽  
Kirsten P Nicolaysen ◽  
Eiichi Sato ◽  
Toshio Nakamura ◽  
...  

ABSTRACTWe obtained radiocarbon (14C) dates with accelerator mass spectrometry (AMS) of vascular plant samples and a charcoal sample collected from peat deposits near the prehistoric village site informally designated CR-03 on Carlisle Island in the Islands of Four Mountains group, Alaska, to determine the eruption age of the CR-02 tephra. A fine vitric ash erupted from Okmok caldera, Umnak Island (ca. 2 ka BP) was also discovered in the bog. The ages of the CR-02 tephra and Okmok II ash are estimated to be 1050 and 2000 cal BP, respectively. Because both tephras are distinctive and widespread, these are important chronostratigraphic markers for archaeological sites in this island group. The 14C dates obtained from this bog are 800 years younger than the dates of the charcoal fragments from cultural layers in the Unit 3 of prehistoric village site CR-02 (AMK-0003).


Radiocarbon ◽  
2017 ◽  
Vol 60 (2) ◽  
pp. 425-439 ◽  
Author(s):  
Helen Fewlass ◽  
Sahra Talamo ◽  
Thibaut Tuna ◽  
Yoann Fagault ◽  
Bernd Kromer ◽  
...  

AbstractFor many of archaeology’s rarest and most enigmatic bone artifacts (e.g. human remains, bone ornaments, worked bone), the destruction of the 500 mg material necessary for direct accelerator mass spectrometry (AMS) dating on graphite targets would cause irreparable damage; therefore many have not been directly dated. The recently improved gas ion source of the MICADAS (MIni CArbon DAting System) offers a solution to this problem by measuring gaseous samples of 5–100 µg carbon at a level of precision not previously achieved with an AMS gas ion source. We present the results of the first comparison between “routine” graphite dates of ca. 1000 µg C (2–3 mg bone collagen) and dates from aliquots of gaseous samples of <100 µg C (<0.2 mg bone collagen), undertaken with the highest possible precision in mind. The experiment demonstrates the performance of the AixMICADAS in achieving reliable radiocarbon measurements from <0.2 mg collagen samples back to 40,000 14C BP. The technique has great implications for resolving chronological questions for key archaeological artifacts.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 249-254 ◽  
Author(s):  
J N Lanting ◽  
A T Aerts-Bijma ◽  
J van der Plicht

When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a remarkable success rate for this method.


Radiocarbon ◽  
2014 ◽  
Vol 56 (1) ◽  
pp. 245-256 ◽  
Author(s):  
Khaled Al-Bashaireh

This article presents accelerator mass spectrometry (AMS) radiocarbon dates of organic inclusions of cement materials from the House XVII-XVIII Complex located in the Umm el-Jimal archaeological site, east Jordan, aiming at refining the unclear chronology of the house. Fine straws and small fragments of charcoal uncovered from preserved architectural lime mortars and plasters were dated without carrying out extensive excavations. The results indicate that the house most probably was initially plastered or built during the middle of the Byzantine period. The results agree with the historical and archaeological data indicating that Umm el-Jimal flourished during this period; therefore, it is probable that the house was established during this time to meet the housing demand for the increased number of its population.


Radiocarbon ◽  
2004 ◽  
Vol 46 (1) ◽  
pp. 455-463 ◽  
Author(s):  
T H Donders ◽  
F Wagner ◽  
K van der Borg ◽  
A F M de Jong ◽  
H Visscher

Sub-fossil sections from a Florida wetland were accelerator mass spectrometry (AMS) dated and the sedimentological conditions were determined. 14C data were calibrated using a combined wiggle-match and 14C bomb-pulse approach. Repeatable results were obtained providing accurate peat chronologies for the last 130 calendar yr. Assessment of the different errors involved led to age models with 3–5 yr precision. This allows direct calibration of paleoenvironmental proxies with meteorological data. The time frame in which 14C dating is commonly applied can possibly be extended to include the 20th century.


Sign in / Sign up

Export Citation Format

Share Document