Radiocarbon and Stratigraphic Chronology of Canímar Abajo, Matanzas, Cuba

Radiocarbon ◽  
2015 ◽  
Vol 57 (5) ◽  
pp. 755-763 ◽  
Author(s):  
Mirjana Roksandic ◽  
William Mark Buhay ◽  
Yadira Chinique de Armas ◽  
Roberto Rodríguez Suárez ◽  
Matthew C Peros ◽  
...  

Twelve accelerator mass spectrometry (AMS) radiocarbon dates from the shell-matrix site of Canímar Abajo (Matanzas, Cuba) are reported. Eleven were obtained directly from human bone collagen in burials and one was obtained from charcoal recovered from a burial context. The site stratigraphy presents two episodes of burial activity separated by a shell midden layer. The AMS dates fall into two compact clusters that correlate remarkably well with the stratigraphy. The older burial dates to between 1380–800 cal BC (2σ) and the younger one to between cal AD 360–950 (2σ). The AMS dates are compared to eight conventional 14C dates previously obtained on shell and charcoal. One of the conventional dates on charcoal (5480–5380 cal BC; 2σ) has been reported as the oldest 14C date in the Caribbean region; its context and reliability are clarified. The suite of AMS dates provides one of the most reliable chronometric dating of a cultural context during this timeframe in Cuba. The correlation of 14C and stratigraphy establishes a solid chronology for investigating the important economic and ritual features of Canímar Abajo.

Radiocarbon ◽  
2018 ◽  
Vol 61 (1) ◽  
pp. 243-263 ◽  
Author(s):  
Andrey V Poliakov ◽  
Svetlana V Svyatko ◽  
Nadezhda F Stepanova

ABSTRACTThis article provides a summary and in-depth analysis of all existing radiocarbon (14C) dates for the Afanasyevo Culture of the Paleometal period. The previous “long” chronology of the culture was widely criticized and contradicted many archaeological observations. The exceedingly wide ranges of the liquid scintillation counting (LSC) dates from bone samples produced in several laboratories and the systematically older ages for the wood/charcoal samples finally reveal the shortcomings of the conventional “long” chronology. From accelerator mass spectrometry (AMS), the Afanasyevo burials of the Altai are dated to the 31st–29th century BC, whereas those of the Middle Yenisei Region to the 29th–25th century BC, which confirms the relatively earlier age of the Altai monuments. The “short” chronology removes the incompatibility of deriving the Afanasyevo Culture from the Yamnaya Culture, which previously appeared “younger” than the Afanasyevo, and also contradictions with the archaeological data. It also explains the small number of sites, the small size of the cemeteries and the lack of the internal periodization. We can now clearly move, from the earlier understanding that the Afanasyevo chronology is too broad, towards a different perception. The new AMS dates only represent a “core” for the Afanasyevo chronology, which cannot be narrowed down, but could be slightly expanded over time.


Antiquity ◽  
1990 ◽  
Vol 64 (245) ◽  
pp. 849-853 ◽  
Author(s):  
T. Douglas Price ◽  
Kenneth Jacobs

The first radiocarbon determinations for a large prehistoric cemetery in Karelia, USSR, have been obtained using accelerator mass spectrometry (AMS) of several organic fractions from prehistoric human bone samples. These determinations suggest an age of c. 7500 b.p. for the burials, definitely within the Mesolithic period. Additional information from skeletal and isotope evidence confirm Olenii ostrov as a very important Mesolithic site in northern Europe.


Radiocarbon ◽  
2014 ◽  
Vol 56 (1) ◽  
pp. 333-339
Author(s):  
Tsim D Schneider ◽  
John Holson ◽  
Lori D Hager ◽  
Samantha S Schell ◽  
Lucian N Schrader

This article presents a set of accelerator mass spectrometry (AMS) radiocarbon dates derived from human bone within burial contexts at CA-NAP-399 in Napa County, California, USA.


Radiocarbon ◽  
2005 ◽  
Vol 47 (2) ◽  
pp. 235-241 ◽  
Author(s):  
Soren Blau ◽  
Vadim Yagodin

Recent osteological analyses of archaeological human skeletal remains from the Ust'-Yurt Plateau, Uzbekistan, provided the opportunity to obtain samples for radiocarbon dating. The results of 18 accelerator mass spectrometry (AMS) dates are presented in this paper and provide the first absolute dates for late prehistoric and early historic archaeological sites in Uzbekistan. The AMS dates suggest that most sites are earlier than have been traditionally thought based on relative dating using artifact typologies.


Radiocarbon ◽  
2013 ◽  
Vol 55 (2) ◽  
pp. 698-708 ◽  
Author(s):  
Anat Marom ◽  
James S O McCullagh ◽  
Thomas F G Higham ◽  
Robert E M Hedges

Dating of the amino acid hydroxyproline from bone collagen has been shown to produce accurate and reliable radiocarbon dates. This article presents further application of the method demonstrating it can be used to obtain dates for both low-collagen and contaminated bones, extending the capability of 14C dating archaeological bone from conventional limits imposed by alternative pretreatment methods. The method therefore has the potential for significantly benefiting the accelerator mass spectrometry (AMS) dating community in the 14C dating of archaeological bone.


Radiocarbon ◽  
2016 ◽  
Vol 58 (2) ◽  
pp. 397-405 ◽  
Author(s):  
Gabriel M Sanchez ◽  
Jon M Erlandson ◽  
Brendan J Culleton ◽  
Douglas J Kennett ◽  
Torben C Rick

AbstractEvidence for aboriginal whale hunting, long thought to be a practice limited to Northwest Coast tribes in northern Washington and British Columbia’s Vancouver Island, was previously reported at the Par-Tee site on the Oregon coast between about cal AD 620 and 990. An age estimate for a humpback whale phalanx with an embedded elk bone harpoon point was based on radiocarbon dates on charcoal not directly associated with the whale bone. We present high-resolution accelerator mass spectrometry (AMS)14C dates for purified bone collagen extracted directly from the whale phalanx and embedded harpoon point. A calibrated date for the harpoon point places the whale hunting event between about cal AD 430 and 550. The apparent14C age of the whale bone is estimated to be 220±3714C yr older than the marine model age at that time, consistent with values from the eastern Pacific. These new dates suggest that whale hunting took place on the Oregon coast as much as 200–500 yr earlier than previously reported and more than a millennium before historic contact in the region. Our research highlights the significance of museum collections and high-resolution AMS14C dating for addressing a variety of issues related to ancient archaeological sites and cultures.


Radiocarbon ◽  
2017 ◽  
Vol 60 (2) ◽  
pp. 425-439 ◽  
Author(s):  
Helen Fewlass ◽  
Sahra Talamo ◽  
Thibaut Tuna ◽  
Yoann Fagault ◽  
Bernd Kromer ◽  
...  

AbstractFor many of archaeology’s rarest and most enigmatic bone artifacts (e.g. human remains, bone ornaments, worked bone), the destruction of the 500 mg material necessary for direct accelerator mass spectrometry (AMS) dating on graphite targets would cause irreparable damage; therefore many have not been directly dated. The recently improved gas ion source of the MICADAS (MIni CArbon DAting System) offers a solution to this problem by measuring gaseous samples of 5–100 µg carbon at a level of precision not previously achieved with an AMS gas ion source. We present the results of the first comparison between “routine” graphite dates of ca. 1000 µg C (2–3 mg bone collagen) and dates from aliquots of gaseous samples of <100 µg C (<0.2 mg bone collagen), undertaken with the highest possible precision in mind. The experiment demonstrates the performance of the AixMICADAS in achieving reliable radiocarbon measurements from <0.2 mg collagen samples back to 40,000 14C BP. The technique has great implications for resolving chronological questions for key archaeological artifacts.


Radiocarbon ◽  
2001 ◽  
Vol 43 (2A) ◽  
pp. 249-254 ◽  
Author(s):  
J N Lanting ◽  
A T Aerts-Bijma ◽  
J van der Plicht

When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a remarkable success rate for this method.


Radiocarbon ◽  
2014 ◽  
Vol 56 (1) ◽  
pp. 245-256 ◽  
Author(s):  
Khaled Al-Bashaireh

This article presents accelerator mass spectrometry (AMS) radiocarbon dates of organic inclusions of cement materials from the House XVII-XVIII Complex located in the Umm el-Jimal archaeological site, east Jordan, aiming at refining the unclear chronology of the house. Fine straws and small fragments of charcoal uncovered from preserved architectural lime mortars and plasters were dated without carrying out extensive excavations. The results indicate that the house most probably was initially plastered or built during the middle of the Byzantine period. The results agree with the historical and archaeological data indicating that Umm el-Jimal flourished during this period; therefore, it is probable that the house was established during this time to meet the housing demand for the increased number of its population.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7174
Author(s):  
John P. Hart ◽  
Robert S. Feranec ◽  
Timothy J. Abel ◽  
Jessica L. Vavrasek

Isotopic analysis of dog (Canis lupus familiaris) bone recovered from archaeological sites as proxies for human bone is becoming common in North America. Chronological placement of the dogs is often determined through radiocarbon dating of dog bone. The Great Lakes, their tributaries, and nearby lakes and streams were important fisheries for Native Americans prior to and after sustained European presence in the region. Carbon entering the food web in freshwater systems is often not in full isotopic equilibrium with the atmosphere, giving rise to spuriously old radiocarbon ages in fish, other aquatic organisms, and their consumers. These freshwater reservoir offsets (FROs) have been noted on human and dog bone in several areas of the world. Here we report the results of multi-tracer Bayesian dietary modeling using δ15N and δ13C values on dog bone collagen from mid-fifteenth to mid-sixteenth-century Iroquoian village sites at the headwaters of the St. Lawrence River, New York, USA. Results indicate that fish was an important component of dog diets. A comparison of radiocarbon dates on dog bone with dates on deer bone or maize from the same sites indicate FROs ranging from 97 ± 24 to 220 ± 39 14Cyr with a weighted mean of 132 ± 8 14Cyr. These results suggest that dog bone should not be used for radiocarbon dating in the absence of modeling to determine fish consumption and that previously reported radiocarbon dates on human bone from the larger region are likely to have FROs given the known importance of fish in regional human diets.


Sign in / Sign up

Export Citation Format

Share Document