Low-Flow Pressure Gradient Pumping for Active Absorption of CO2 on a Molecular Sieve

Radiocarbon ◽  
2016 ◽  
Vol 59 (2) ◽  
pp. 281-291
Author(s):  
Peng Cheng ◽  
Shugang Wu ◽  
Yunchong Fu ◽  
Xiaohu Xiong ◽  
Zhenchuan Niu ◽  
...  

AbstractThe authors have developed an active absorption system combining a molecular sieve with a pressure gradient as a way to overcome the shortcomings of the phosphoric acid solution displacement method. Taking advantage of the pressure gradient produced between the inside and outside of a bottle, as water moves through it, CO2 in the atmosphere can actively be absorbed onto a molecular sieve in its pathway. A comparative study showed that the technique was in agreement with the phosphoric acid displacement method, within error. We applied the new method to collect not only atmospheric CO2 samples, but also CO2 samples from soil respiration to verify its utility. Simple yet practical, our method is well suited to extended collection times in a variety of environments, and capable of providing relatively large amounts of carbon for high-precision accelerator mass spectrometry (AMS) 14C analyses of atmospheric samples.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
K Piayda ◽  
A Wimmer ◽  
H Sievert ◽  
K Hellhammer ◽  
S Afzal ◽  
...  

Abstract Background In the era of transcatheter aortic valve replacement (TAVR), there is renewed interest in percutaneous balloon aortic valvuloplasty (BAV), which may qualify as the primary treatment option of choice in special clinical situations. Success of BAV is commonly defined as a significant mean pressure gradient reduction after the procedure. Purpose To evaluate the correlation of the mean pressure gradient reduction and increase in the aortic valve area (AVA) in different flow and gradient patterns of severe aortic stenosis (AS). Methods Consecutive patients from 01/2010 to 03/2018 undergoing BAV were divided into normal-flow high-gradient (NFHG), low-flow low-gradient (LFLG) and paradoxical low-flow low-gradient (pLFLG) AS. Baseline characteristics, hemodynamic and clinical information were collected and compared. Additionally, the clinical pathway of patients (BAV as a stand-alone procedure or BAV as a bridge to aortic valve replacement) was followed-up. Results One-hundred-fifty-six patients were grouped into NFHG (n=68, 43.5%), LFLG (n=68, 43.5%) and pLFLG (n=20, 12.8%) AS. Underlying reasons for BAV and not TAVR/SAVR as the primary treatment option are displayed in Figure 1. Spearman correlation revealed that the mean pressure gradient reduction had a moderate correlation with the increase in the AVA in patients with NFHG AS (r: 0.529, p<0.001) but showed no association in patients with LFLG (r: 0.145, p=0.239) and pLFLG (r: 0.030, p=0.889) AS. Underlying reasons for patients to undergo BAV and not TAVR/SAVR varied between groups, however cardiogenic shock or refractory heart failure (overall 46.8%) were the most common ones. After the procedure, independent of the hemodynamic AS entity, patients showed a functional improvement, represented by substantially lower NYHA class levels (p<0.001), lower NT-pro BNP levels (p=0.003) and a numerical but non-significant improvement in other echocardiographic parameters like the left ventricular ejection fraction (p=0.163) and tricuspid annular plane systolic excursion (TAPSE, p=0.066). An unplanned cardiac re-admission due to heart failure was necessary in 23.7% patients. Less than half of the patients (44.2%) received BAV as a bridge to TAVR/SAVR (median time to bridge 64 days). Survival was significantly increased in patients having BAV as a staged procedure (log-rank p<0.001). Conclusion In daily clinical practice, the mean pressure gradient reduction might be an adequate surrogate of BAV success in patients with NFHG AS but is not suitable for patients with other hemodynamic entities of AS. In those patients, TTE should be directly performed in the catheter laboratory to correctly assess the increase of the AVA. BAV as a staged procedure in selected clinical scenarios increases survival and is a considerable option in all flow states of severe AS. (NCT04053192) Figure 1 Funding Acknowledgement Type of funding source: None


Radiocarbon ◽  
2005 ◽  
Vol 47 (3) ◽  
pp. 441-451 ◽  
Author(s):  
S M L Hardie ◽  
M H Garnett ◽  
A E Fallick ◽  
A P Rowland ◽  
N J Ostle

A method for collecting an isotopically representative sample of CO2 from an air stream using a zeolite molecular sieve is described. A robust sampling system was designed and developed for use in the field that includes reusable molecular sieve cartridges, a lightweight pump, and a portable infrared gas analyzer (IRGA). The system was tested using international isotopic standards (13C and 14C). Results showed that CO2 could be trapped and recovered for both δ13C and 14C analysis by isotope ratio mass spectrometry (IRMS) and accelerator mass spectrometry (AMS), respectively, without any contamination, fractionation, or memory effect. The system was primarily designed for use in carbon isotope studies of ecosystem respiration, with potential for use in other applications that require CO2 collection from air.


1978 ◽  
Vol 7 (4) ◽  
pp. 313-318 ◽  
Author(s):  
I.A.S. Mansour ◽  
G.H. Sedahmed ◽  
M.Z. El-Abd ◽  
A.M. Ahmed

2015 ◽  
Vol 733 ◽  
pp. 43-46
Author(s):  
Jiang Min Zhao ◽  
Tian Ge Li

In this paper, several aspects of the improvement of the oil recovery were analyzed theoretically based on the mechanism that equi-fluidity enhances the pressure gradient. These aspects include the increase of the flow rate and the recovery rate, of the swept volume, and of the oil displacement efficiency. Also, based on the actual situation, the author designed the oil displacement method with gathered energy equi-fluidity, realizing the expectation of enhancing oil recovery with multi-slug and equi-fluidity oil displacement method.


Sign in / Sign up

Export Citation Format

Share Document