Use of Lightweight Lime Mortar in the Construction of the West Church of Umm el-Jimal, Jordan: Radiocarbon Dating and Characterization

Radiocarbon ◽  
2016 ◽  
Vol 58 (3) ◽  
pp. 583-598 ◽  
Author(s):  
Khaled Al-Bashaireh

AbstractLightweight concrete was widely used and mainly spread during the Roman period. This technology was used in the West Church, Umm el-Jimal, Jordan. The date of construction of the West Church is debated and different dates have been suggested based on its architectural styles and comparisons with other churches. This research aims to radiocarbon date the construction of the dome (church), archaeometrically characterize the mortar, and determine the source of the scoria. Three charcoals and two broken pieces comprising scoria from the mortar of the fallen dome and six large scoria samples from Quais cone were collected. The research used different analytical methods including accelerator mass spectrometry 14C, X-ray diffraction, petrographic microscopy, inductively coupled plasma mass spectrometry, and scanning electron microscopy-energy dispersive X-ray spectroscopy. 14C determinations dated the dome (church) to the Late Roman–Early Byzantine periods, which contradicted the archaeological data. Analytical results showed that the mortar is lime-based and hydraulic. The similarities in the mineralogical composition, macroscopic and microscopic features, and chemical composition (compared statistically) of the scoria samples and the short distance between Umm el-Jimal and the Quais volcanic cone very likely indicate that the Quais volcanic cone is the source of the scoria used in the fallen dome.

2008 ◽  
Vol 22 (15) ◽  
pp. 1487-1495 ◽  
Author(s):  
YEXIA FAN ◽  
HONGTAO LI ◽  
LIANCHENG ZHAO

Congruent Ce (0.1 wt %): Cu (0.05 wt %): LiNbO 3 single crystals doped with 0, 1, 3, 4, 5, 6 mol% MgO respectively were grown by the Czochrolski method in air along the C direction. The inductively coupled plasma optical emission/mass spectrometry (ICP-OE/MS), the X-ray powder diffraction (XRD), the differential thermal analysis (DTA), the ultraviolet-visible (UV-Vis) absorption spectra and the infrared (IR) absorption spectrum were measured and discussed in terms of the spectroscopic characterization and the defect structure of the Mg:Ce:Cu:LiNbO 3 crystals. The results indicated that the Mg:Ce:Cu:LiNbO 3 crystal grown from the congruent composition melt showed large [ Li ]/[ Nb ] ratios, which was closer to stoichiometry, an increase in the Curie temperature and a non-linear shift in the absorption edge with MgO concentration increasing. The threshold concentration of MgO in Mg:Ce:Cu:LiNbO 3 of nearly 5.52 mol% was estimated.


Sign in / Sign up

Export Citation Format

Share Document