Thermal Buckling of a Circular Plate

1967 ◽  
Vol 71 (683) ◽  
pp. 798-798 ◽  
Author(s):  
E. H. Mansfield

SummaryThis note considers the buckling of a circular lenticular plate subjected to a temperature which varies parabolically in its plane. The novel feature in the analysis is the determination of the stiffening effect due to the prevention of deflections, but not slopes, along a diameter.

TAPPI Journal ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 9-17
Author(s):  
ALESSANDRA GERLI ◽  
LEENDERT C. EIGENBROOD

A novel method was developed for the determination of linting propensity of paper based on printing with an IGT printability tester and image analysis of the printed strips. On average, the total fraction of the surface removed as lint during printing is 0.01%-0.1%. This value is lower than those reported in most laboratory printing tests, and more representative of commercial offset printing applications. Newsprint paper produced on a roll/blade former machine was evaluated for linting propensity using the novel method and also printed on a commercial coldset offset press. Laboratory and commercial printing results matched well, showing that linting was higher for the bottom side of paper than for the top side, and that linting could be reduced on both sides by application of a dry-strength additive. In a second case study, varying wet-end conditions were used on a hybrid former machine to produce four paper reels, with the goal of matching the low linting propensity of the paper produced on a machine with gap former configuration. We found that the retention program, by improving fiber fines retention, substantially reduced the linting propensity of the paper produced on the hybrid former machine. The papers were also printed on a commercial coldset offset press. An excellent correlation was found between the total lint area removed from the bottom side of the paper samples during laboratory printing and lint collected on halftone areas of the first upper printing unit after 45000 copies. Finally, the method was applied to determine the linting propensity of highly filled supercalendered paper produced on a hybrid former machine. In this case, the linting propensity of the bottom side of paper correlated with its ash content.


Author(s):  
Nesma M Fahmy ◽  
Adel M Michael

Abstract Background Modern built-in spectrophotometer software supporting mathematical processes provided a solution for increasing selectivity for multicomponent mixtures. Objective Simultaneous spectrophotometric determination of the three naturally occurring antioxidants—rutin(RUT), hesperidin(HES), and ascorbic acid(ASC)—in bulk forms and combined pharmaceutical formulation. Method This was achieved by factorized zero order method (FZM), factorized derivative method (FD1M), and factorized derivative ratio method (FDRM), coupled with spectrum subtraction(SS). Results Mathematical filtration techniques allowed each component to be obtained separately in either its zero, first, or derivative ratio form, allowing the resolution of spectra typical to the pure components present in Vitamin C Forte® tablets. The proposed methods were applied over a concentration range of 2–50, 2–30, and 10–100 µg/mL for RUT, HES, and ASC, respectively. Conclusions Recent methods for the analysis of binary mixtures, FZM and FD1M, were successfully applied for the analysis of ternary mixtures and compared to the novel FDRM. All were revealed to be specific and sensitive with successful application on pharmaceutical formulations. Validation parameters were evaluated in accordance with the International Conference on Harmonization guidelines. Statistical results were satisfactory, revealing no significant difference regarding accuracy and precision. Highlights Factorized methods enabled the resolution of spectra identical to those of pure drugs present in mixtures. Overlapped spectra of ternary mixtures could be resolved by spectrum subtraction coupled FDRM (SS-FDRM) or by successive application of FZM and FD1M.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Alberto Pascual-García

AbstractIn this comment, we analyse the conceptual framework proposed by Aguirre de Cárcer (Microbiome 7:142, 2019), introducing the novel concept of Phylogenetic Core Groups (PCGs). This notion aims to complement the traditional classification in operational taxonomic units (OTUs), widely used in microbial ecology, to provide a more intrinsic taxonomical classification which avoids the use of pre-determined thresholds. However, to introduce this concept, the author frames his proposal in a wider theoretical framework based on a conceptualization of selection that we argue is a tautology. This blurs the subsequent formulation of an assembly principle for microbial communities, favouring that some contradictory examples introduced to support the framework appear aligned in their conclusions. And more importantly, under this framework and its derived methodology, it is not possible to infer PCGs from data in a consistent way. We reanalyse the proposal to identify its logical and methodological flaws and, through the analysis of synthetic scenarios, we propose a number of methodological refinements to contribute towards the determination of PCGs in a consistent way. We hope our analysis will promote the exploration of PCGs as a potentially valuable tool, helping to bridge the gap between environmental conditions and community composition in microbial ecology.


1993 ◽  
Vol 48 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Joseph Grobe ◽  
Duc Le Van ◽  
Gudrun Lange

The course of the reactions o f fluorophosphaalkenes F3CP = C (F)OR [R = Me (1), Et (2)] with methanol or ethanol strongly depends on the experimental conditions. Thus at 70 °C a mixture of the 2-phosphapropionic acid ester F3CP (H )CO2R [R = Me (3), Et (4)] and trifluoromethylphosphane H2PCF3 is formed [molar ratio: 3 or 4 /H2 CF3 ≈1/1]. If the precursors F3CP (H )CO2R [R = Me (3), Et) are used as starting materials, the reaction with ROH under the same conditions affords 3 and 4, respectively, (90 to 95% yield) with only traces of H2PCF 3. In the presence o f iPr2NH these precursors react with R′OH to give the novel trifluoromethylphosphaalkenes F3CP = C (OR )OR [R /R′: Me/Me (6); E t/E t (7); Me/Et (8)]. With Et2NH , 3 undergoes an addition/elimination process yielding the interesting push/pull system Et2N(F)C = P-CO2Me (5). 1 and 2 react with primary amines R′NH2 (R′= tBu, Me) with stereoselective formation of the fairly labile phosphaalkenes F3CP = C(OR)NHR′ [R /R′: Me/tBu (9), Et/tBu(10), Me/Me (11)] with trans-positions for CF3 and NHR′.The new compounds 3 -11 were characterized by spectroscopic investigations (1H , 19F, 31P, 13C NMR ; IR, MS) and determination of M+ or typical fragment ions [M+ -OR ] by high resolution mass spectrometry.


2016 ◽  
Vol 242 ◽  
pp. 38-46 ◽  
Author(s):  
Linda Pastero ◽  
Rossella Arletti ◽  
Fernando Cámara ◽  
Lara Gigli ◽  
Monica Cagnoni

2020 ◽  
Vol 10 (3) ◽  
pp. 245-255
Author(s):  
Mahsa Hasanzadeh ◽  
Zahra Hasanzadeh ◽  
Sakineh Alizadeh ◽  
Mehran Sayadi ◽  
Mojtaba Nasiri Nezhad ◽  
...  

CuxO-NiO nanocomposite film for the non-enzymatic determination of glucose was prepared by the novel modifying method. At first, anodized Cu electrode was kept in a mixture solution of CuSO4, NiSO4 and H2SO4 for 15 minutes. Then, a cathodization process with a step potential of -6 V in a mixture solution of CuSO4 and NiSO4 was initiated, generating formation of porous Cu-Ni film on the bare Cu electrode by electrodeposition assisted by the release of hydrogen bubbles acting as soft templates. Optimized conditions were determined by the experimental design software for electrodeposition process. Afterward, Cu-Ni modified electrode was scanned by cyclic voltammetry (CV) method in NaOH solution to convert Cu and Ni nanoparticles to the nano-scaled CuxO-NiO film. The electrocatalytic behavior of the novel CuxO-NiO film toward glucose oxidation was studied by CV and chronoamperometry (CHA) techniques. The calibration curve of glucose was found linear in a wide range of 0.04–5.76 mM, with a low limit of detection (LOD) of 7.3 µM (S/N = 3) and high sensitivity (1.38 mA mM-1 cm-2). The sensor showed high selectivity against some usual interfering species and high stability (loss of only 6.3 % of its performance over one month). The prepared CuxO-NiO nanofilm based sensor was successfully applied for monitoring glucose in human blood serum and urine samples.


2010 ◽  
Vol 62 (2) ◽  
pp. 231-243 ◽  
Author(s):  
Milan Kojic ◽  
Jelena Lozo ◽  
B. Jovcic ◽  
Ivana Strahinic ◽  
D. Fira ◽  
...  

The aim of this paper was to research the molecular cloning of genes encoding the novel bacteriocin BacSJ from Lactobacillus paracasei subsp. paracasei BGSJ2-8 by using a newly constructed shuttle cloning vector pA13. A new shuttle-cloning vector, pA13, was constructed and successfully introduced into Escherichia coli, Lactobacillus and Lactococcus strains, showing a high segregational and structural stability in all three hosts. The natural plasmid pSJ2-8 from L. paracasei subsp. paracasei BGSJ2-8 was cloned in the pA13 using BamHI, obtaining the construct pB5. Sequencing and in silico analysis of the pB5 revealed 15 open reading frames (ORF). Plasmid pSJ2-8 harbors the genes encoding the production of two bacteriocins, BacSJ and acidocin 8912. The combined N-terminal amino acid sequencing of BacSJ in combination with DNA sequencing of the bacSJ2-8 gene enabled the determination of the primary structure of a bacteriocin BacSJ. The production and functional expression of BacSJ in homologous and heterologous hosts suggest that bacSJ2-8 and bacSJ2-8i together with the genes encoding the ABC transporter and accessory protein are the minimal requirement for the production of BacSJ. Biochemical and genetic analyses showed that BacSJ belongs to the class II bacteriocins. The shuttle cloning vector pA13 could be used as a tool for genetic manipulations in lactobacilli and lactococci. <br><br><b><font color="red">withdrawn; due to a printing error. Link to the Editorial Decision <u><a href="http://dx.doi.org/10.2298/ABS1004251U">10.2298/ABS1004251U</a></u></font></b><br>


Sign in / Sign up

Export Citation Format

Share Document