An Investigation of an Inclined Jet in a Crosswind

1977 ◽  
Vol 28 (1) ◽  
pp. 51-58 ◽  
Author(s):  
P Taylor

SummaryWind-tunnel experiments were conducted to determine the interference characteristics of an inclined turbulent jet exhausting from a flat plate into a turbulent subsonic crosswind. The jet was not yawed with respect to the undisturbed free stream. The suction force (lift loss), the jet penetration into the crosswind, the jet deflection and the rate of total pressure decay along the jet centre line were all reduced by an increase in the inclination of the jet. The centre of pressure moved downstream. These results were attributed to a decrease in the entrainment rate of the jet as the inclination increased in a downstream direction.

2019 ◽  
Vol 213 ◽  
pp. 02077
Author(s):  
Vladislav Skála ◽  
Václav Uruba ◽  
Pavel Antoš ◽  
Pavel Jonáš

Bypass boundary layer transition in flows on flat plate by adverse pressure gradient was investigated experimentally. It was measuered cases with combination of adverse pressure gradient by different free stream turbulence intenzity. Hot wire anemometry technique was used. Measuerement were made on flat plate in closed wind tunnel. Adverse pressure gradient was set by diffuser in tested section of wind tunnel. Grid turbulence of free stream was controlled by screen. Hot wire anemometry technique was used, intermitency factor was evaluated. Results were compared wih cases with simpliest conditions.


2011 ◽  
Vol 60 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Andrea Farsang ◽  
József Szatmári ◽  
Gábor Négyesi ◽  
Máté Bartus ◽  
Károly Barta

Összefoglalva megállapítható, hogy nagyobb szélsebesség hatására több talajanyag erodálódott, és ezzel együtt megnőtt az áthalmozott tápanyag mennyisége is. Minden vizsgált szélsebesség esetében a szélerózió következtében 3–7%-kal megnőtt az 1 mm és annál nagyobb szemcsék, illetve aggregátumok aránya a kiindulási talajanyag felső 0–1 cm-es rétegében. A finomabb szemcse-, illetve aggregátum-átmérők esetén a fújatást követően csökkenést tapasztaltunk. A leginkább a 315 μm és az annál kisebb szemcsék aránya csökkent, átlagosan 1–2%-kal. A minták kémiai és fizikai elemzéseiből megállapítható, hogy a láda utáni humuszosabb, aggregátumosabb szerkezetű minták N-tartalma nagyobb, mint az alapmintáé. A fogók mintáiban nem tapasztaltunk feldúsulást egy vizsgált elem esetében sem, a fogókban összegyűlt talajanyag kálium- és foszfortartalma is kisebb volt, mint az alapmintáé. Ennek oka, hogy az itt csapdázódott üledékben kisebb a tápanyag-megkötődés helyéül szolgáló leiszapolható rész aránya, mint a kiindulási talajanyagban. A vizsgálatainkból látszik, hogy a szélerózió hatására a lebegtetve, illetve ugráltatva áthalmozott talajszemcsékkel és aggregátumokkal szállított humusz 500–3500 kg/ha nagyságrendben mozoghat a vizsgált csernozjom területen akár egyetlen szélesemény hatására is. A kálium-áthalmozódás mértéke elérheti a 100 kg/ha értéket, a foszforé a 70 kg/ha-t, a nitrogénveszteség mértéke pedig akár 200–300 kg/ha is lehet egy szélesemény alkalmával. E tápanyagmennyiség nagy része több száz méter, de akár kilométeres távolságokra is távozhat a területről. Az általunk végzett szélcsatornás vizsgálatok eredményei becslésnek tekinthetők, hiszen vizsgálatunk során növénymaradvány-mentes, szitált és légszáraz talajanyaggal dolgoztunk. A szitálás eredményeként csupán a 2 mm-es és annál kisebb aggregátumok maradtak meg, ami azonban az intenzív művelés alá vont, porosodott, leromlott szerkezetű talajfelszín körülményeit jól közelíti. Ugyanakkor a természetben zajló széleróziós eseményeknek a szélcsatorna-kísérlet csak leegyszerűsített modellváltozata, hiszen az általunk szimulált szélesemények 15 percig tartottak, s nem tudtunk széllökéseket előállítani, melyek a széleróziós események alakulásában nagy jelentőségűek. Ennek tudatában kell a kapott eredményeket értékelni, mégis érdemes velük foglalkozni. A terepi mérésekkel szemben a szélcsatornában végzett vizsgálatoknak éppen az a legfontosabb előnye, hogy ellenőrzött, kontrollált körülmények között végezzük a méréseket, így rengeteg olyan szempontot meg tudunk vizsgálni, amit terepi mérésekkel lehetetlen lenne. Ilyen szempontok a pontos szélsebesség és szélirány hatása, az erodált felület nagysága és tulajdonságai. Kutatásunk következő lépése a szélcsatornás kísérletekkel vizsgált mintaterületeken terepi, mobil szélcsatornás vizsgálatok végzése, valamint terepi üledékcsapdák elhelyezésével a valós szélesemények által elszállított talaj mennyiségének és minőségének meghatározása. Célunk mind pontosabb képet alkotni a hazai jó minőségű csernozjom talajok szélerózió okozta tápanyagveszteségének mértékéről. A mezőgazdasági művelés alatt álló csernozjom területek feltalajában a tápanyag és szerves anyag szélerózió útján történő mozgási törvényszerűségeinek feltárása több szempontból is hasznos: segítséget jelent a területi tervezésben, a defláció szempontjából optimális területhasználat és művelési módok meghatározásában. Képet kapunk arról, hogy a legnagyobb gazdasági potenciállal rendelkező termőtalajunk milyen veszélyeknek van kitéve, s hogy a nem megfelelő időben, nem megfelelő nedvességviszonyok mellett történő talajművelés következtében kialakuló szerkezetromlás (porosodás) miatti deflációs károk milyen tápanyagveszteséggel járhatnak együtt.


1970 ◽  
Author(s):  
Tetsundo Nakatogawa ◽  
Niichi Nishiwaki ◽  
Masaru Hirata ◽  
Kaoru Torii

1978 ◽  
Vol 100 (1) ◽  
pp. 91-96 ◽  
Author(s):  
V. de Brederode ◽  
P. Bradshaw

Measurements in the entry region of a square duct (specifically, a wind-tunnel working section) show that the direct effect of stress-induced secondary flows in the corners on the center-plane boundary layer is negligible for boundary layers thinner than about one-fourth of the duct width. Further, the effects of streamwise pressure gradient and of quasi-collinear lateral convergence tend to cancel so that the velocity profiles and skin friction are quite close to those on a flat plate. This shows that the boundary layer on the floor of a wind tunnel of constant, square cross section can be used to simulate a flat-plate flow even when the boundary layer thickness is as large as one-fourth of the tunnel height.


Sign in / Sign up

Export Citation Format

Share Document