Effect of dietary threonine on growth performance and muscle growth, protein synthesis and antioxidant-related signalling pathways of hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂

2019 ◽  
Vol 123 (2) ◽  
pp. 121-134 ◽  
Author(s):  
Ye Zhao ◽  
Qin Jiang ◽  
Xiao-Qiu Zhou ◽  
Shang-Xiao Xu ◽  
Lin Feng ◽  
...  

AbstractThe experiment was conducted to investigate the effects of dietary threonine (Thr) on growth performance and muscle growth, protein synthesis and antioxidant-related signalling pathways of hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. A total of 1200 fish (14·19 (se 0·13) g) were randomly distributed into six groups with four replicates each, fed six diets with graded level of Thr (9·5, 11·5, 13·5, 15·4, 17·4 and 19·3 g/kg diets) for 56 d. Results showed (P < 0·05) that dietary Thr (1) increased percentage weight gain, specific growth rate, feed efficiency and protein efficiency ratio; (2) up-regulated growth hormone (GH), insulin-like growth factor 1 (IGF-1), proliferating cell nuclear antigen, myogenic regulation factors (MyoD, Myf5, MyoG and Mrf4) and myosin heavy chain (MyHC) mRNA levels; (3) increased muscle protein content via regulating the protein kinase B/target of rapamycin signalling pathway and (4) decreased malondialdehyde and protein carbonyl contents, increased catalase, glutathione-S-transferase, glutathione reductase and GSH activities, up-regulated mRNA levels of antioxidant enzymes related to NFE2-related factor 2 and γ-glutamylcysteine ligase catalytic subunit. These results suggest that Thr has a potential role to improve muscle growth and protein synthesis, which might be due to the regulation of GH-IGF system, muscle growth-related gene, antioxidative capacity and protein synthesis-related signalling pathways. Based on the quadratic regression analysis of specific growth rate, the Thr requirement of hybrid catfish (14·19–25·77 g) was estimated to be 13·77 g/kg of the diet (33·40 g/kg of dietary protein).

2021 ◽  
pp. 1-35
Author(s):  
Qin Jiang ◽  
Ye Zhao ◽  
Xiao-Qiu Zhou ◽  
Xiao-Yun Wu ◽  
Shang-Xiao Xu ◽  
...  

Abstract The present study evaluated effects of dietary supplementation with tryptophan (Trp) on muscle growth, protein synthesis, and antioxidant capacity in hybrid catfish Pelteobagrus vachelli♀ × Leiocassis longirostris♂. Fish were fed six different diets containing 2.6 (control), 3.1, 3.7, 4.2, 4.7, and 5.6 g Trp kg−1 diet for 56 days, respectively. Results showed that dietary Trp significantly (1) improved muscle protein content, fiber density, and frequency of fiber diameter; (2) up-regulated the mRNA levels of PCNA, myf5, MyoD1, MyoG, MRF4, IGF-I, IGF-II, IGF-IR, PIK3Ca, TOR, 4EBP1, and S6K1; (3) increased phosphorylation levels of AKT, TOR, and S6K1; (4) decreased contents of MDA and PC, and increased activities of CAT, GST, GR, ASA, and AHR; (5) up-regulated mRNA levels of CuZnSOD, CAT, GST, GPx, GCLC, and Nrf2, and decreased Keap1 mRNA level; (6) increased nuclear Nrf2 protein level and the intranuclear antioxidant response element binding ability, and reduced Keap1 protein level. These results indicated that dietary Trp improved muscle growth, protein synthesis as well as antioxidant capacity, which might be partly related to myogenic regulatory factors (MRFs), IGFs/PIK3Ca/AKT/TOR, and Keap1/Nrf2 signaling pathways. Finally, based on the quadratic regression analysis of muscle protein and MDA contents, the optimal Trp requirements of hybrid catfish (21.82-39.64 g) were estimated to be 3.94 and 3.93 g Trp kg−1 diet (9.57 and 9.54 g kg−1 of dietary protein), respectively.


Microbiology ◽  
2005 ◽  
Vol 151 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Tiina M. Pakula ◽  
Katri Salonen ◽  
Jaana Uusitalo ◽  
Merja Penttilä

Trichoderma reesei was cultivated in chemostat cultures on lactose-containing medium. The cultures were characterized for growth, consumption of the carbon source and protein production. Secreted proteins were produced most efficiently at low specific growth rates, 0·022–0·033 h−1, the highest specific rate of total protein production being 4·1 mg g−1 h−1 at the specific growth rate 0·031 h−1. At low specific growth rates, up to 29 % of the proteins produced were extracellular, in comparison to only 6–8 % at high specific growth rates, 0·045–0·066 h−1. To analyse protein synthesis and secretion in more detail, metabolic labelling of proteins was applied to analyse production of the major secreted protein, cellobiohydrolase I (CBHI, Cel7A). Intracellular and extracellular labelled CBHI was quantified and analysed for pI isoforms in two-dimensional gels, and the synthesis and secretion rates of the molecule were determined. Both the specific rates of CBHI synthesis and secretion were highest at low specific growth rates, the optimum being at 0·031 h−1. However, at low specific growth rates the secretion rate/synthesis rate ratio was significantly lower than that at high specific growth rates, indicating that at low growth rates the capacity of cells to transport the protein becomes limiting. In accordance with the high level of protein production and limitation in the secretory capacity, the transcript levels of the unfolded protein response (UPR) target genes pdi1 and bip1 as well as the gene encoding the UPR transcription factor hac1 were induced.


2021 ◽  
Author(s):  
Qin Jiang ◽  
Ming-Yao Yan ◽  
Ye Zhao ◽  
Xiao-Qiu Zhou ◽  
Long Yin ◽  
...  

Abstract Background: Muscle is the complex and heterogeneous tissue, which comprises the primary edible part of the trunk of fish and mammals. Previous studies have shown that dietary isoleucine (Ile) exerts beneficial effects on growth in aquatic animals. However, there were limited studies regarding the benefits of Ile on fish muscle and their effects on flesh quality and muscle growth. Thus, this study was conducted to explore whether dietary Ile had affected flesh quality and muscle growth in hybrid bagrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). Methods: A total of 630 hybrid fish, with an initial average body weight of 33.11 ± 0.09 g, were randomly allotted into seven experimental groups with three replicates each, and respectively fed seven diets with 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile/kg diets for 8 weeks. Results: In the present study, we demonstrated that Ile significantly: (1) increased muscle protein and lipid contents and the frequency distribution of myofibers with ≤ 20 and ≥ 50 µm of diameter; (2) improved pH value, shear force, cathepsin B and L activities, hydroxyproline content, resilience, cohesiveness, and decreased cooking loss, lactate content, hardness, springiness, gumminess, and chewiness; (3) decreased reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC) contents, GCLC and Keap1 mRNA levels, and up-regulated CuZnSOD, CAT, GPX1a, GST, and Nrf2 mRNA levels; (4) up-regulated the insulin-like growth factor 1, 2 (IGF-1, IGF-2), insulin-like growth factor 1 receptor (IGF-1R), proliferating cell nuclear antigen (PCNA), Myf5, Myod, Myog, Mrf4, and MyHC mRNA levels, and decreased MSTN mRNA level; (5) increased muscle protein deposition by activating AKT-TOR-S6K1 and AKT-FOXO3a signaling pathways. Conclusion: These results revealed that dietary Ile improved flesh quality, which might be due to increasing nutritional content, physicochemical, texture parameters, and antioxidant ability; promoting muscle growth by affecting myocytes hyperplasia and hypertrophy, and muscle protein deposition associated with protein synthesis and degradation signaling pathways. Finally, the quadratic regression analysis of chewiness, ROS, and protein contents against dietary Ile levels suggested that the optimal dietary Ile levels for hybrid bagrid catfish was estimated to be 14.19, 12.36, and 12.78 g/kg diet, corresponding to 36.59, 31.87, and 32.96 g/kg dietary protein, respectively.


2020 ◽  
Author(s):  
Qin Jiang ◽  
Ming-Yao Yan ◽  
Ye Zhao ◽  
Xiao-Qiu Zhou ◽  
Long Yin ◽  
...  

Abstract Background: Muscle is the complex and heterogeneous tissue, which comprises the primary edible part of the trunk of fish and mammals. Previous study has shown that dietary isoleucine (Ile) exerts beneficial effects on animals’ growth. However, limited studies have evaluated the benefits of Ile on fish muscle and their effects on flesh quality and muscle growth. Thus, this study was conducted to explore whether dietary Ile had affected flesh quality and muscle growth in hybrid bagrid catfish (Pelteobagrus vachelli × Leiocassis longirostris). Results: In the current study, we demonstrated that Ile significantly: (1) increased muscle protein and lipid contents and the frequency distribution of muscle fibers with ≤ 20 and ≥ 50 µm of diameter; (2) improved pH value, shear force, cathepsin B and L activities, hydroxyproline content, resilience, cohesiveness, and decreased cooking loss, lactate content, hardness, springiness, gumminess, and chewiness; (3) decreased reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC) contents, GCLC and Keap1 mRNA levels, and up-regulated CuZnSOD, CAT, GST, and Nrf2 mRNA levels; (4) up-regulated the insulin-like growth factor 1, 2 (IGF-1, IGF-2), insulin-like growth factor 1 receptor (IGF-1R), proliferating cell nuclear antigen (PCNA), Myf5, MyoD, MyoG, MRF4, and MyHC mRNA levels, and decreased MSTN mRNA level; (5) increased muscle protein deposition by activating AKT-TOR-S6K1 and AKT-FOXO3a signaling pathways. Conclusion: These results revealed that Ile improved flesh quality, which might be due to increasing nutritional content, physicochemical, texture parameters, and antioxidant ability; promoting muscle growth by affecting myocytes hyperplasia and hypertrophy, and muscle protein deposition associated with protein synthesis and degradation signaling pathways. Finally, the quadratic regression analysis of chewiness, ROS, and protein contents against dietary Ile levels suggested that the optimal dietary Ile levels for hybrid bagrid catfish was estimated to be 14.19, 12.36, and 12.78 g Ile kg-1 diet, corresponding to 36.59, 31.87, and 32.96 g kg-1 dietary protein, respectively.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Qin Jiang ◽  
Mingyao Yan ◽  
Ye Zhao ◽  
Xiaoqiu Zhou ◽  
Long Yin ◽  
...  

Abstract Background Muscle is the complex and heterogeneous tissue, which comprises the primary edible part of the trunk of fish and mammals. Previous studies have shown that dietary isoleucine (Ile) exerts beneficial effects on growth in aquatic animals. However, there were limited studies regarding the benefits of Ile on fish muscle and their effects on flesh quality and muscle growth. Thus, this study was conducted to explore whether dietary Ile had affected flesh quality and muscle growth in hybrid bagrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). Methods A total of 630 hybrid fish, with an initial average body weight of 33.11 ± 0.09 g, were randomly allotted into seven experimental groups with three replicates each, and respectively fed seven diets with 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, and 20.0 g Ile/kg diets for 8 weeks. Results In the present study, we demonstrated that Ile significantly: (1) increased muscle protein and lipid contents and the frequency distribution of myofibers with ≤ 20 μm and ≥ 50 μm of diameter; (2) improved pH value, shear force, cathepsin B and L activities, hydroxyproline content, resilience, cohesiveness, and decreased cooking loss, lactate content, hardness, springiness, gumminess, and chewiness; (3) decreased reactive oxygen species (ROS), malondialdehyde (MDA), and protein carbonyl (PC) contents, GCLC and Keap1 mRNA levels, and up-regulated CuZnSOD, CAT, GPX1a, GST, and Nrf2 mRNA levels; (4) up-regulated the insulin-like growth factor 1, 2 (IGF-1, IGF-2), insulin-like growth factor 1 receptor (IGF-1R), proliferating cell nuclear antigen (PCNA), Myf5, Myod, Myog, Mrf4, and MyHC mRNA levels, and decreased MSTN mRNA level; (5) increased muscle protein deposition by activating AKT-TOR-S6K1 and AKT-FOXO3a signaling pathways. Conclusion These results revealed that dietary Ile improved flesh quality, which might be due to increasing nutritional content, physicochemical, texture parameters, and antioxidant ability; promoting muscle growth by affecting myocytes hyperplasia and hypertrophy, and muscle protein deposition associated with protein synthesis and degradation signaling pathways. Finally, the quadratic regression analysis of chewiness, ROS, and protein contents against dietary Ile levels suggested that the optimal dietary Ile levels for hybrid bagrid catfish was estimated to be 14.19, 12.36, and 12.78 g/kg diet, corresponding to 36.59, 31.87, and 32.96 g/kg dietary protein, respectively.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 327 ◽  
Author(s):  
Ye Zhao ◽  
Jin-Yang Li ◽  
Qin Jiang ◽  
Xiao-Qiu Zhou ◽  
Lin Feng ◽  
...  

(1) Background: l-leucine (Leu) plays a positive role in regulating protein turnover in skeletal muscle in mammal. However, the molecular mechanism for the effects of Leu on muscle growth and protein deposition is not clearly demonstrated in fish. This study investigated the effects of dietary Leu on growth performance and muscle growth, protein synthesis, and degradation-related signaling pathways of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). (2) Methods: A total of 630 hybrid catfish (23.19 ± 0.20 g) were fed 6 different experimental diets containing graded levels of Leu at 10.0 (control), 15.0, 20.0, 25.0, 30.0, 35.0, and 40.0 g Leu kg-1 for 8 weeks. (3) Results: Results showed that dietary Leu increased percent weight gain (PWG), specific growth rate (SGR), FI (feed intake), feed efficiency (FE), protein efficiency ratio (PER), muscle fibers diameter, and muscle fibers density; up-regulated insulin-like growth factor I (IGF-I), insulin-like growth factor I receptor (IGF-IR), proliferating cell nuclear antigen (PCNA), myogenic regulation factors (MyoD, Myf5, MyoG, and Mrf4), and MyHC mRNA levels; increased muscle protein synthesis via regulating the AKT/TOR signaling pathway; and attenuated protein degradation via regulating the AKT/FOXO3a signaling pathway. (4) Conclusions: These results suggest that Leu has potential role to improve muscle growth and protein deposition in fish, which might be due to the regulation of IGF mRNA expression, muscle growth related gene, and protein synthesis and degradation-related signaling pathways. Based on the broken-line model, the Leu requirement of hybrid catfish (23.19-54.55 g) for PWG was estimated to be 28.10 g kg-1 of the diet (73.04 g kg-1 of dietary protein). These results will improve our understanding of the mechanisms responsible for muscle growth and protein deposition effects of Leu in fish.


Sign in / Sign up

Export Citation Format

Share Document