Penetration and encapsulation of the larval endoparasitoid Exorista larvarum (Diptera: Tachinidae) in the factitious host Galleria mellonella (Lepidoptera: Pyralidae)

2013 ◽  
Vol 104 (2) ◽  
pp. 203-212 ◽  
Author(s):  
A. Valigurová ◽  
V. Michalková ◽  
P. Koník ◽  
M.L. Dindo ◽  
M. Gelnar ◽  
...  

AbstractThe tachinid fly Exorista larvarum (L.) (Diptera: Tachinidae) is a polyphagous larval endoparasitoid that deposits its eggs on the host exoskeleton of lepidopteran and tenthredinid larvae. The attachment of larval E. larvarum and the formation of the respiratory funnel were studied during infestation in the last larval instar of the wax moth, Galleria mellonella (L.) (Lepidoptera: Pyralidae). The tachinid larvae burrow through the host integument after hatching, using their robust cephalopharyngeal skeleton, leaving a dark spot at the point of their penetration as a result of host cuticle melanization. Endoparasitoid penetration induces the host cellular defence, resulting in the formation of a haemocyte capsule consisting of multi-cellular sheaths. This enveloping capsule later undergoes melanization, which is mostly obvious towards the posterior part of the endoparasitoid. The endoparasitoid uses the host encapsulation response to build a respiratory funnel from the modified host integument, leading to the host surface. The encapsulated larva remains attached to the respiratory funnel via an anal hook and cuticular spines until fully developed. Additional immunohistochemical analyses were used to study host–parasitoid interactions. Indirect immunofluorescence showed no labelling of potential tachinid antigens and confirmed no effect on the surrounding host tissues. A simulated parasitization with coated polybead microspheres revealed the mortal impact of tachinid antigens to the host. Hosts injected with antigen-coated polybeads died as a consequence of an acute and extensive immunological response to the tachinid antigens and not due to the trauma caused by foreign objects inside their body.

Author(s):  
Karem Ghoneim ◽  
Khalid Hamadah ◽  
Mohammad Tanani ◽  
Dyaa Emam

The greater wax moth, Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) is the most destructive pest of honey bee, Apis mellifera Linnaeus (Hymenoptera: Apidae), throughout the world. The present study was conducted to determine the quantitative and qualitative impairing effects of the arthropod venoms, viz., death stalker scorpion Leiurus quinquestriatus (Hemprich & Ehrenberg) venom (SV), oriental Hornet (wasp) Vespa orientalis Linnaeus venom (WV) and Apitoxin of A. mellifera (AP) on the larval haemogram. For this purpose, the 3rd instar larvae were treated with LC50 of each of these venoms (3428.9, 2412.6, and 956.16 ppm, respectively). The haematological investigation was conducted in haemolymph of the 5th and 7th (last) instar larvae. The important results could be summarized as follows. Five basic types of the freely circulating haemocytes in the haemolymph of last instar (7th) larvae of G. mellonella had been identified: Prohemocytes (PRs), Plasmatocytes (PLs), Granulocytes (GRs), Spherulocytes (SPs) and Oenocytoids (OEs). All venoms unexceptionally prohibited the larvae to produce normal hemocyte population (count). No certain trend of disturbance in the differential hemocyte counts of circulating hemocytes in larvae of G. mellonella after treatment with the arthropod venoms. Increasing or decreasing population of the circulating hemocytes seemed to depend on the potency of the venom, hemocyte type and the larval instar.  In PRs of last instar larvae, some cytopathological features had been observed after treatment with AP or WV, but SV failed to cause cytopathological features. With regard to PLs, some cytopathological features had been observed after treatment with AP while both SV and WV failed to cause cytopathological features in this hemocyte type. No venom exhibited cytopathological effects on GRs, SPs or OEs.


Author(s):  
D. Adly ◽  
W. M. Marzouk

AbstractThe greater wax moth, Galleria mellonella Linnaeus (Lepidoptera: Pyralidae), is considered one of the most important pests effecting honeybee industry. The present study was carried out to evaluate the efficacy of the larval parasitoid, Bracon hebetor Say. (Hymenoptera: Braconidae), on G. mellonella in laboratory, honeybee colonies, and stored wax combs. In the laboratory studies, the pre-ovipositoinal, ovipositional, and post-ovipositional periods of the parasitoid were 0.27 ± 0.45, 20.87 ± 1.5, and 4.33 ± 0.48 days, respectively. The total number of eggs/female of the parasitoid on the 5th larval instar of G. mellonella reached 71.77 ± 7.84 eggs. B. hebetor females paralyze their hosts, the percentage of paralyzed 2nd larval instar of G. mellonella was 30% and parasitoid could not lay eggs on them, while the percentage of paralyzed 5th larval instar was 100% and parasitoid could lay eggs. In the field studies, the parasitoid, B. hebetor was released in honeybee colonies and stored wax combs to evaluate its efficacy. By releasing the parasitoid, the mean numbers of dead larvae of G. mellonella in treated honeybee colonies were greater than in the untreated, (91.8 ± 5.319 and 53.3 ± 24.373) larvae/colony, respectively. Also, releasing of B. hebetor against G. mellonella in stored wax combs reduced the number of survived G. mellonella larvae in treated storage wax combs to 3.2 ± 2.38 than in the untreated (using formic acid) 9.3 ± 5.52 larvae/store colonies. This is the first work to study efficacy of the parasitoid, B. hebetor on G. mellonella larvae in honeybee colonies and stored wax combs. The results suggested that the parasitoid had the efficacy to be used for controlling G. mellonella in beehives and stored wax comb in Egypt.


2018 ◽  
Vol 20 (2) ◽  
pp. 91-101
Author(s):  
Andressa Lima de Brida ◽  
Silvia Renata Siciliano Wilcken ◽  
Luis Garrigós Leite

Nematoides entomopatogênicos (NEPs) são alternativas eficientes para o controle de pragas. O emprego de novas técnicas da produção in vivo, permite o progresso da tecnologia de formulação de bioinseticidas. O objetivo do trabalho, foi avaliar a influência da luminosidade e do substrato na capacidade de infecção de juvenis infectantes (JIs) de Steinernema brazilense IBCBn 06, Steinernema carpocapsae IBCBn 02, Steinernema feltiae IBCBn 47 e Heterorhabditis amazonensis IBCBn 24 em lagartas de Galleria mellonella (Lepidoptera: Pyralidae). O delineamento experimental foi inteiramente casualizado com quatro tratamentos e oito repetições. As parcelas, constituídas por placa de Petri com, substrato-areia e substrato-papel filtro, com e sem luminosidade, inoculados com suspensão de 1,5 mL contendo 400JIs e quatro lagartas de G. mellonella. O número de JIs foi quantificado após a mortalidade das lagartas. A taxa de infecção de JIs de S. carpocapsae IBCBn 02 e S. feltiae IBCBn 47 variaram de 2,14 a 3,28 e de 11,04 a 13,09 JIs/lagarta. O substrato-areia com e sem luminosidade permitiu a maior taxa de infeção dos JIs de S. brazilense IBCBn 06 de 7,86 e 9,44 JIs/lagarta, e 13,49 JIs/lagarta com luminosidade para H. amazonensis IBCBn 24. O substrato-areia, permite a maior taxa de infecção por JIs de NEPs.


Author(s):  
Rahma R. Z. Mahdy ◽  
Shaimaa A. Mo’men ◽  
Marah M. Abd El-Bar ◽  
Emad M. S. Barakat

Abstract Background Insect lipid mobilization and transport are currently under research, especially lipases and lipophorin because of their roles in the production of energy and lipid transport at a flying activity. The present study has been conducted to purify intracellular fat body lipase for the first time, from the last larval instar of Galleria mellonella. Results Purification methods by combination of ammonium sulfate [(NH4)2SO4] precipitation and gel filtration using Sephadex G-100 demonstrated that the amount of protein and the specific activity of fat body lipase were 0.008633 ± 0.000551 mg/ml and 1.5754 ± 0.1042 μmol/min/mg protein, respectively, with a 98.9 fold purity and recovery of 50.81%. Hence, the sephadex G-100 step was more effective in the purification process. SDS-PAGE and zymogram revealed that fat body lipase showed two monomers with molecular weights of 178.8 and 62.6 kDa. Furthermore, biochemical characterization of fat body lipase was carried out through testing its activities against several factors, such as different temperatures, pH ranges, metal ions, and inhibitors ending by determination of their kinetic parameters with the use of p-nitrophenyl butyrate (PNPB) as a substrate. The highest activities of enzyme were determined at the temperature ranges of 35–37 °C and 37–40 °C and pH ranges of 7–9 and 7–10. The partially purified enzyme showed significant stimulation by Ca2+, K+, and Na+ metal ions indicating that fat body lipase is metalloproteinase. Lipase activity was strongly inhibited by some inhibitors; phenylmethylsulfonyl fluoride (PMSF), ethylene-diaminetetractic acid (EDTA), and ethylene glycoltetraacetic acid (EGTA) providing evidence of the presence of serine residue and activation of enzymes by metal ions. Kinetic parameters were 0.316 Umg− 1 Vmax and 301.95 mM Km. Conclusion Considering the purification of fat body lipase from larvae and the usage of some inhibitors especially ion chelating agents, it is suggested to develop a successful control of Galleria mellonella in near future by using lipase inhibitors.


2018 ◽  
Vol 157 ◽  
pp. 1-3 ◽  
Author(s):  
Yuri S. Tokarev ◽  
Ekaterina V. Grizanova ◽  
Anastasia N. Ignatieva ◽  
Ivan M. Dubovskiy

Author(s):  
T.N. Klementeva ◽  
◽  
A.S. Artemchenko ◽  
M.V. Tyurin ◽  
E.S. Kosman ◽  
...  

The wax moth (Galleria mellonella; Lepidoptera: Pyralidae) lines have been obtained as a result of the artificial diet with broad-spectrum antibiotic selection. An influence of that diet on the insect’s physiological parameters was examined through several generations. A significant increase in the activity of a number of enzymatic and non-enzymatic antioxidants because of artificial diet with antibiotic has been observed in the midgut of the wax moth daughter generations. Observed changes in the midgut enzymes activity and increase of antioxidants level are denote a damage in the gut tissues.


Sign in / Sign up

Export Citation Format

Share Document