scholarly journals Purification and characterization of fat body lipase from the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae)

Author(s):  
Rahma R. Z. Mahdy ◽  
Shaimaa A. Mo’men ◽  
Marah M. Abd El-Bar ◽  
Emad M. S. Barakat

Abstract Background Insect lipid mobilization and transport are currently under research, especially lipases and lipophorin because of their roles in the production of energy and lipid transport at a flying activity. The present study has been conducted to purify intracellular fat body lipase for the first time, from the last larval instar of Galleria mellonella. Results Purification methods by combination of ammonium sulfate [(NH4)2SO4] precipitation and gel filtration using Sephadex G-100 demonstrated that the amount of protein and the specific activity of fat body lipase were 0.008633 ± 0.000551 mg/ml and 1.5754 ± 0.1042 μmol/min/mg protein, respectively, with a 98.9 fold purity and recovery of 50.81%. Hence, the sephadex G-100 step was more effective in the purification process. SDS-PAGE and zymogram revealed that fat body lipase showed two monomers with molecular weights of 178.8 and 62.6 kDa. Furthermore, biochemical characterization of fat body lipase was carried out through testing its activities against several factors, such as different temperatures, pH ranges, metal ions, and inhibitors ending by determination of their kinetic parameters with the use of p-nitrophenyl butyrate (PNPB) as a substrate. The highest activities of enzyme were determined at the temperature ranges of 35–37 °C and 37–40 °C and pH ranges of 7–9 and 7–10. The partially purified enzyme showed significant stimulation by Ca2+, K+, and Na+ metal ions indicating that fat body lipase is metalloproteinase. Lipase activity was strongly inhibited by some inhibitors; phenylmethylsulfonyl fluoride (PMSF), ethylene-diaminetetractic acid (EDTA), and ethylene glycoltetraacetic acid (EGTA) providing evidence of the presence of serine residue and activation of enzymes by metal ions. Kinetic parameters were 0.316 Umg− 1 Vmax and 301.95 mM Km. Conclusion Considering the purification of fat body lipase from larvae and the usage of some inhibitors especially ion chelating agents, it is suggested to develop a successful control of Galleria mellonella in near future by using lipase inhibitors.

2019 ◽  
Author(s):  
Rahma R.Z. Mahdy ◽  
Shaimaa A. Mo’men ◽  
Marah M. Abd El-Bar ◽  
Emad M.S. Barakat

AbstractLipid mobilization and transport in insects is under investigation, especially lipases and lipophorin because of their roles in energy production and transport of lipids at flying activity. The present study has been conducted to purify intracellular fat body lipase for the first time, from last larval instar of Galleria mellonella. Purification methods by combination of ammonium sulfate precipitation and gel filtration using Sephadex G-100 demonstrated that the amount of protein and the specific activity of fat body lipase were 0.008633±0.000551 mg/ml and 1.5754±0.1042 μmol/min/mg protein, respectively, with a 98.9 fold purity and recovery of 50.81%. Hence, the sephadex G-100 step was more effective in purification process. SDS-PAGE and zymogram revealed that fat body lipase showed two monomers with molecular weights of 178.8 and 62.6 kDa. Furthermore biochemical characterization of fat body lipase was carried out through testing its activities against several factors such as; different temperatures, pH ranges, metal ions and inhibitors ending by determination of their kinetic parameters with the use of p-Nitrophenyl butyrate (PNPB) as a substrate. The highest activities of enzyme were determined at the temperature ranges of 35-37°C and 37-40°C and pH ranges of 7-9 and 7–10. The partially purified enzyme showed significant stimulation by Ca2+, K+ and Na+ metal ions indicating that fat body lipase is metalloproteinase. Additionally, lipase activity was strongly inhibited by some inhibitors; phenylmethylsulfony fluoride (PMSF), ethylene-diaminetetractic acid (EDTA) and ethylene glycoltetraacetic acid (EGTA) providing an evidence of presence of serine residue and activation of enzymes by metal ions. Kinetic parameters were 301.95mM Km and 0.316 Umg−1 Vmax. By considering the purification of fat body lipase from larvae and using some inhibitors especially ion chelating agents, it is suggested to develop this study by using lipase inhibitors to reach a successful control of Galleria mellonella in the near future.


2018 ◽  
Vol 43 (6) ◽  
pp. 638-650
Author(s):  
Ruth Ololade Amiola ◽  
Adedeji Nelson Ademakinwa ◽  
Zainab Adenike Ayinla ◽  
Esther Nkechi Ezima ◽  
Femi Kayode Agboola

Abstract Background β-Cyanoalanine synthase plays essential roles in germinating seeds, such as in cyanide homeostasis. Methods β-Cyanoalanine synthase was isolated from sorghum seeds, purified using chromatographic techniques and its biochemical and catalytic properties were determined. Results The purified enzyme had a yield of 61.74% and specific activity of 577.50 nmol H2S/min/mg of protein. The apparent and subunit molecular weight for purified β-cyanoalanine synthase were 58.26±2.41 kDa and 63.4 kDa, respectively. The kinetic parameters with sodium cyanide as substrate were 0.67±0.08 mM, 17.60±0.50 nmol H2S/mL/min, 2.97×10−1 s−1 and 4.43×102 M−1 s−1 for KM, Vmax, kcat and kcat/KM, respectively. With L-cysteine as substrate, the kinetic parameters were 2.64±0.37 mM, 63.41±4.04 nmol H2S/mL/min, 10.71×10−1 s−1 and 4.06×102 M−1 s−1 for KM, Vmax, kcat and kcat/KM, respectively. The optimum temperature and pH for activity were 35°C and 8.5, respectively. The enzyme retained more than half of its activity at 40°C. Inhibitors such as HgCl2, EDTA, glycine and iodoacetamide reduced enzyme activity. Conclusion The biochemical properties of β-cyanoalanine synthase in germinating sorghum seeds highlights its roles in maintaining cyanide homeostasis.


2013 ◽  
Vol 8 (12) ◽  
pp. 1183-1193 ◽  
Author(s):  
Marcin Maciąga ◽  
Michał Szkop ◽  
Andrzej Paszkowski

AbstractSix allozymes of aspartate aminotransferase (AAT, EC 2.6.1.1): three plastidial (AAT-2 zone) and three cytosolic (AAT-3 zone) were isolated from common wheat (Triticum aestivum) seedlings and highly purified by a five-step purification procedure. The identity of the studied proteins was confirmed by mass spectrometry. The molecular weight of AAT allozymes determined by gel filtration was 72.4±3.6 kDa. The molecular weights of plastidial and cytosolic allozymes estimated by SDS-PAGE were 45.3 and 43.7 kDa, respectively. The apparent Michaelis constant (K m) values determined for four substrates appeared to be very similar for each allozyme. The values of the turnover number (k cat) and the k cat/K m ratio calculated for allozymes with L-aspartate as a leading substrate were in the range of 88.5–103.8 s−1/10,412–10,795 s−1 M−1 for AAT-2 zone and 4.6–7.0 s−1/527–700 s−1 M−1 for AAT-3 zone. These results clearly demonstrated much higher catalytic efficiency of AAT-2 allozymes. Therefore, partial sequences of cDNA encoding AATs from different zones were obtained using the RT-PCR technique. Comparison of the AAT-2 and AAT-3 amino acid sequences from active site regions revealed five non-conservative substitutions, which impact on the observed differences in the isozymes catalytic efficiency is discussed.


Author(s):  
Layla T. Yassen ◽  
Saad L. Hamed ◽  
Ban O. Abdulsattar ◽  
Asmaa A. Hussein

The aim of this study was purification and characterization of CTX-M-15 as a medically important enzyme from locally Klebsiella pneumoniae isolate, CTX-M-15 enzyme was subjected to two purification steps including: precipitation with 80% ammonium sulfate saturation and gel filtration chromatography by using Sepharose -6B column. Specific activity of purified enzyme has been increment up to 21.9 IU/mg with 7.3 purification folds and 69% enzyme recapture. Characterization study of purified enzyme demonstrated that the M.wt. of CTX-M-15 produced by K. pneumoniae was almost 32.2 kDa. The maximal enzyme activity at (pH 7.0), and enzyme settled at pH 6-7. The enzyme also revealed a full activity at a range of temperature between 30-37oC. Enzyme activity has inhibited powerfully in the existence of EDTA and calcium chloride, when added separately at a constant concentration. Moreover, copper chloride, and ferric chloride also caused a strong inhibition to the enzyme activity while cloxacillin showed a minor effect on enzyme activity.


2004 ◽  
Vol 186 (7) ◽  
pp. 2068-2073 ◽  
Author(s):  
Marco A. Caccamo ◽  
Courtney S. Malone ◽  
Madeline E. Rasche

ABSTRACT During growth on one-carbon (C1) compounds, the aerobic α-proteobacterium Methylobacterium extorquens AM1 synthesizes the tetrahydromethanopterin (H4MPT) derivative dephospho-H4MPT as a C1 carrier in addition to tetrahydrofolate. The enzymes involved in dephospho-H4MPT biosynthesis have not been identified in bacteria. In archaea, the final step in the proposed pathway of H4MPT biosynthesis is the reduction of dihydromethanopterin (H2MPT) to H4MPT, a reaction analogous to the reaction of the bacterial dihydrofolate reductase. A gene encoding a dihydrofolate reductase homolog has previously been reported for M. extorquens and assigned as the putative H2MPT reductase gene (dmrA). In the present work, we describe the biochemical characterization of H2MPT reductase (DmrA), which is encoded by dmrA. The gene was expressed with a six-histidine tag in Escherichia coli, and the recombinant protein was purified by nickel affinity chromatography and gel filtration. Purified DmrA catalyzed the NAD(P)H-dependent reduction of H2MPT with a specific activity of 2.8 μmol of NADPH oxidized per min per mg of protein at 30°C and pH 5.3. Dihydrofolate was not a substrate for DmrA at the physiological pH of 6.8. While the existence of an H2MPT reductase has been proposed previously, this is the first biochemical evidence for such an enzyme in any organism, including archaea. Curiously, no DmrA homologs have been identified in the genomes of known methanogenic archaea, suggesting that bacteria and archaea produce two evolutionarily distinct forms of dihydromethanopterin reductase. This may be a consequence of different electron donors, NAD(P)H versus reduced F420, used, respectively, in bacteria and methanogenic archaea.


Author(s):  
Ekowati Chasanah ◽  
Usman Sumo Friend Tambunan ◽  
Tanti Yulianti

L-glutaminase (L-glutamine amidohydrolase, EC 3.5.1.2) is a very important enzyme due to its role as flavor enhancer and antileukemic agent. Salt-tolerant L-glutaminase produced bymarine bacteria is favorable in food industries. This study describes the screening of L- glutaminase producing marine bacteria from Sangihe-Talaud Sea, North Sulawesi, Indonesia.Screening of L-glutaminase was performed using a liquid medium and identification of selected isolate was  performed using molecular-based 16S rDNA. Results showed that there were 7 isolates produced positive results of L-glutaminase, and one of them (II.1 isolate) produced the highest activity, i.e 147.99 U/L, equivalent to the specific activity of 62.32 U/mg. The isolate then selected for further study. Bacterial identification based on 16S rRNA sequencing has revealed that the isolate was 96% similar to Pseudomonas aeruginosa strain CG-T8. Characterization of extracellular L-glutaminase from the II.1 isolate showed that the enzyme worked optimally at temperature  of 37-45 °C and pH 7. The enzyme was stable when NaCl solution was added up to 8% and  began to decrease on addition of NaCl solution of 16% and 20% with relative activity of 79% and 74%, respectively. The effect of metal ions, e.g Mn2+, Mg2+, and Co2+ in the form of chloride salt, were able to increase enzyme activity, whereas the addition of other metal ions (Zn2+, Fe3+, and Ca2+) decreased the activity. The molecular weights of L-glutaminase was estimated around42 kDa and 145 kDa.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peixian Bai ◽  
Liyuan Wang ◽  
Kang Wei ◽  
Li Ruan ◽  
Liyun Wu ◽  
...  

Abstract Background Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. Results The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). Conclusions Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


Author(s):  
Ismat Bibi ◽  
Haq Nawaz Bhatti

This study deals with purification and characterization of lignin peroxidase (LiP) isolated from Agaricus bitorqus A66 during decolorization of NOVASOL Direct Black dye. A laboratory scale experiment was conducted for maximum LiP production under optimal conditions. Purification & fractionation of LiP was performed on DEAE-Sepharose ion exchange chromatography followed by Sephadex G-50 gel filtration. The purified LiP has a specific activity of 519 U/mg with 6.73% activity recover. The optimum pH and temperature of purified LiP for the oxidation of veratryl alcohol were 6.8 and 45 °C, respectively. Michaelis-Menten kinetic constants (Vmax and Km) were determined using different concentrations of veratryl alcohol (1-35 mM). The Km and Vmax were 16.67 mM and 179.2 U/mL respectively, for veratryl alcohol oxidation as determined from the Lineweaver-Burk plot. Thermal inactivation studies were carried out at different temperatures to check the thermal stability of the enzyme. Enthalpy of activation decreased where Free energy of activation for thermal denaturation increased at higher temperatures. A possible explanation for the thermal inactivation of LiP at higher temperatures is also discussed.


1975 ◽  
Vol 21 (12) ◽  
pp. 2019-2027
Author(s):  
M. Laguerre ◽  
R. Turcotte

The tuberculin activity of protoplasmic extracts isolated from living BCG was purified successively by gel filtration on Sephadex G-100 and G-75, and by electrophoresis on 7.5% and on gradient (6–18%) polyacrylamide gels. The tuberculin-active fractions, as determined in BCG-sensitized guinea pigs, were used as the starting material for each of the following fractionation steps.The physicochemical properties and the antigenic activity of the biologically active fractions have shown that a single component, or only a few ones with similar properties, possessed high tuberculin activity. These active components were proteins having relatively high molecular weights (about 72 000) and could behave as antigens.


1971 ◽  
Vol 124 (2) ◽  
pp. 337-343 ◽  
Author(s):  
Abraham Spector ◽  
Lu-Ku Li ◽  
Robert C. Augusteyn ◽  
Arthur Schneider ◽  
Thomas Freund

α-Crystallin was isolated from calf lens periphery by chromatography on DEAE-cellulose and gel filtration. Three distinct populations of macromolecules have been isolated with molecular weights in the ranges approx. 6×105−9×105, 0.9×106−4×106and greater than 10×106. The concentration of macromolecules at the molecular-weight limits of a population are very low. The members of the different populations do not appear to be in equilibrium with each other. Further, in those molecular-weight fractions investigated, no equilibrium between members of the same population was observed. The population of lowest molecular weight comprises 65–75% of the total material. The amino acid and subunit composition of the different-sized fractions appear very similar, if not identical. The only chemical difference observed between the fractions is the presence of significant amounts of sugar in the higher-molecular-weight fractions. Subunit molecular weights of approx. 19.5×103and 22.5×103were observed for all α-crystallin fractions.


Sign in / Sign up

Export Citation Format

Share Document