Biological activity of two new pyrrole derivatives against stored-product species: influence of temperature and relative humidity

2016 ◽  
Vol 106 (4) ◽  
pp. 446-456 ◽  
Author(s):  
M.C. Boukouvala ◽  
N.G. Kavallieratos ◽  
C.G. Athanassiou ◽  
L.P. Hadjiarapoglou

AbstractMembers of the pyrrole group are likely to have interesting properties that merit additional investigation as insecticides at the post-harvest stages of agricultural commodities. In the present work, the insecticidal effect of two new pyrrole derivatives, ethyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3i) and isopropyl 3-(benzylthio)-4,6-dioxo-5-phenyl-2,4,5,6-tetrahydropyrrolo[3,4-c]pyrrole-carboxylate (3k) were studied as stored-wheat protectants against two major stored-product insect species, the confused flour beetle, Tribolium confusum Jaquelin du Val adults and larvae and the Mediterranean flour moth, Ephestia kuehniella Zeller larvae at different doses (0.1, 1 and 10 ppm), exposure intervals (7, 14 and 21 days), temperatures (20, 25 and 30°C) and relative humidity (55 and 75%) levels. For T. confusum adults, in the case of the pyrrole derivative 3i, mortality was low and it did not exceed 32.2% in wheat treated with 10 ppm 3i at 30°C and 55% relative humidity. Progeny production was very low (<1 individual/vial) in all combinations of 55% relative humidity, including control. In the case of the pyrrole derivative 3k, mortality reached 67.8% at 30°C and 55% relative humidity in wheat treated with 10 ppm after 21 days of exposure. Progeny production was low in all tested combinations (≤0.7 individuals/vial) of 55% relative humidity, including control. For T. confusum larvae, in the case of the pyrrole derivative 3i, at the highest dose, mortality was 82.2% at 25°C and 55% relative humidity whereas in the case of 3k it reached 77.8% at the same combination. In contrast, mortality at 75% relative humidity remained very low and did not exceed 13.3%. For E. kuehniella larvae, the highest mortalities, 44.4 and 63.3%, were observed in 10 ppm at 25°C and 55% relative humidity for both pyrrole derivatives. The compounds tested here have a certain insecticidal effect, but this effect is moderated by the exposure, the target species, the temperature and the relative humidity.

2007 ◽  
Vol 70 (7) ◽  
pp. 1627-1632 ◽  
Author(s):  
NICKOLAS G. KAVALLIERATOS ◽  
CHRISTOS G. ATHANASSIOU ◽  
CONSTANTIN J. SAITANIS ◽  
DEMETRIUS C. KONTODIMAS ◽  
ALEXANDER N. ROUSSOS ◽  
...  

The insecticidal effect of two azadirachtin-based insecticides, NeemAzal-T/S and Oikos 32 EC, was examined against adults of the grain beetles Sitophilus oryzae and Tribolium confusum on wheat and maize under different temperature and humidity regimes. The insecticides were applied at three dosages, equivalent to 50, 100, and 200 mg of active ingredient per kg of grain. Adults of the above species were exposed to the treated grains at 20, 25, and 30°C and two relative humidity levels (55 and 75%), and mortality was assessed after 14 days of exposure. All adults were then removed, and the treated substrate remained under the same conditions for 45 more days. After this period, the grains were checked for progeny production. In both species and both commodities, mortality increased with insecticide dosage. For many dosage-formulation combinations, mortality increased with temperature at 55% relative humidity but the reverse was observed at 75% relative humidity. Comparing the two formulations, NeemAzal-T/S was more effective than Oikos 32 EC at all the combinations tested. NeemAzal-T/S was more effective at high relative humidity, but the efficacy of Oikos 32 EC was not much affected by the relative humidity. Survival was high, even at the higher dosages, in some of the temperature-humidity combinations. Progeny production of S. oryzae in the treated grains was considerably higher than that of T. confusum. The results of the present study indicate that further dosage increases and longer exposure times are needed to obtain a complete (100%) adult mortality in all combinations tested. However, the feasibility of using higher azadirachtin dosages (&gt;200 mg/kg grain) is questionable for cost reasons. Consequently, the use of these substances is not comparable to the use of traditional grain protectants, which are usually used at dosages of &lt;5 mg/kg grain. Although azadirachtin-based insecticides can be used with success for protection of stored grain, our study demonstrated that under certain circumstances such an application may not be effective. Abiotic factors (formulation, temperature, and relative humidity) had a more serious impact on the efficacy of these insecticides than did biotic factors (target species and commodity).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christos G. Athanassiou ◽  
Nickolas G. Kavallieratos ◽  
Frank H. Arthur ◽  
Christos T. Nakas

AbstractKnockdown and mortality of adults of the red flour beetle, Tribolium castaneum (Herbst) and the confused flour beetle, Tribolium confusum Jacquelin du Val, were assessed after exposure to two contact insecticides, chlorfenapyr and cyfluthrin, on a concrete surface. Individuals were rated on a scale for knockdown of exposed adults according to their mobility from 1, representing immobilized adults to 5, representing normally moving (similar to the controls). Only cyfluthrin gave immediate knockdown. Adults were rated at 1, 3 and 7 days post-exposure. After the final assessment, adults were discarded and the same procedure was repeated for 5 consecutive weeks with new adults exposed on the same treated surfaces. Despite initial knockdown, many individuals did not eventually die after exposure to cyfluthrin. In contrast, adults exposed to chlorfenapyr were not initially knocked down after exposure but most died after 7 days. These trends were similar during the entire 5-week residual testing period. The storage of the treated dishes in illuminated or non-illuminated conditions did not affect the insecticidal effect of either insecticide. The results of the present study can be further implemented towards the design of a “lethality index” that can serve as a quick indicator of knockdown and mortality rates caused after exposure to insecticides.


1995 ◽  
Vol 23 (1) ◽  
pp. 41-45 ◽  
Author(s):  
M.F. Burrow ◽  
Y. Taniguchi ◽  
T. Nikaido ◽  
M. Satoh ◽  
N. Inai ◽  
...  

2011 ◽  
Vol 295-297 ◽  
pp. 1206-1210
Author(s):  
Yan Feng Guo ◽  
Xian Ping Ma ◽  
Yu Yan ◽  
Yun Gang Fu

The main feature of this article is the investigation on the influence of temperature, relative humidity, film thickness on permeability of PET packaging film, the analysis of perm-selectivity of the packaging films for oxygen gas and carbon dioxide gas, and the evaluation on experimental formulas of water vapor, O2 and CO2 gas permeating rates on the basis of gas molecular osmotic reaction kinetics and regression analysis. The comparison between experimental studies and calculation indicates that: (1) with increment of ambient temperature water vapor, O2 and CO2 permeating rate of PET films and PET/Al film also rise, and the logarithm of water vapor, O2 and CO2 gas permeating rates has linear relation with the reciprocal of thermodynamic temperature, and (2) the influence of relative humidity on water vapor permeating rate of PET film with thickness 12µm is the least, and that of PET film with thickness 20µm and PET/Al film with thickness 18µm is a little obvious. (3) The PET films hold remarkable perm-selectivity for O2 and CO2 gas, and CO2 gas permeating rate is about two times of O2 gas, yet O2 and CO2 gas permeating rates of PET/Al film are both very low and have small difference, so the PET/Al film has better barrier performance than the PET film.


1983 ◽  
Vol 147 (1) ◽  
pp. 125-128 ◽  
Author(s):  
T. Konno ◽  
H. Suzuki ◽  
N. Katsushima ◽  
A. Imai ◽  
F. Tazawa ◽  
...  

Agriculture ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 226 ◽  
Author(s):  
Spiridon Mantzoukas ◽  
Ioannis Lagogiannis ◽  
Ioannis Pettas ◽  
Georgia Korbou ◽  
Alexandra Magita ◽  
...  

Within the context of the harmful side-effects of chemical pest control applications, the present study investigated the insecticidal effect of three commercial biopesticides, the fungal Metab (Beauveria bassiana, Metarhizium anisopliae) and Lecan (Lecanicillium lecanii), as well as raw zeolite, against Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae), also known as the confused flour beetle. To this end, we sprayed Tribolium confusum adults with suspensions of the said biopesticides, at three different dosages (250 ppm, 500 ppm, and 1000 ppm) on Avena sativa L. and Linum usitatissimum L. hull and no hull seeds. The data were analyzed in terms of three- and four-way ANOVA model, and the overall survival was determined while using the Kaplan–Meier method. The mortality of Tribolium confusum adults was recorded and analyzed in correlation with the following parameters: dose, product (seed), days, and treatment as factors. At the end of the experiment, all of the biopesticides were effectively pathogenic, but there was variation in their effectiveness in terms of the T. confusum mortality that they caused, depending on the product (seed). The type of seed can play a role in the pathogenicity or effectiveness of the biopesticides. Additionally, our results showed that the mortality percentage was dependent on the dose and treatment of the commercial biopesticides.


Sign in / Sign up

Export Citation Format

Share Document