scholarly journals On Interpolation by Iteration of Proportional Parts, without the Use of Differences

1932 ◽  
Vol 3 (1) ◽  
pp. 56-76 ◽  
Author(s):  
A. C. Aitken

Linear interpolation between two values of a function ua and ub can be performed, as is well known, in either of two ways. If the divided difference (ub−ua)/(b−a), which is usually denoted by u (a, b) or u (b, a), is provided, or its equivalent in tables at unit interval (the ordinary difference), we should generally prefer to use the formulawhich is the linear case of Newton's fundamental formula for interpolation by divided differences. If differences are not given, but a machine is available, then the use of proportional parts in the form of the weighted averagethe linear case of Lagrange's formula, is actually more convenient, since it involves no clearing of the product dials until the final result is read.

2014 ◽  
Vol 24 (1) ◽  
pp. 195-215
Author(s):  
JEFFREY GAITHER ◽  
GUY LOUCHARD ◽  
STEPHAN WAGNER ◽  
MARK DANIEL WARD

We analyse the first-order asymptotic growth of \[ a_{n}=\int_{0}^{1}\prod_{j=1}^{n}4\sin^{2}(\pi jx)\, dx. \] The integer an appears as the main term in a weighted average of the number of orbits in a particular quasihyperbolic automorphism of a 2n-torus, which has applications to ergodic and analytic number theory. The combinatorial structure of an is also of interest, as the ‘signed’ number of ways in which 0 can be represented as the sum of ϵjj for −n ≤ j ≤ n (with j ≠ 0), with ϵj ∈ {0, 1}. Our result answers a question of Thomas Ward (no relation to the fourth author) and confirms a conjecture of Robert Israel and Steven Finch.


2008 ◽  
Vol 51 (2) ◽  
pp. 236-248
Author(s):  
Victor N. Konovalov ◽  
Kirill A. Kopotun

AbstractLet Bp be the unit ball in 𝕃p, 0 < p < 1, and let , s ∈ ℕ, be the set of all s-monotone functions on a finite interval I, i.e., consists of all functions x : I ⟼ ℝ such that the divided differences [x; t0, … , ts] of order s are nonnegative for all choices of (s + 1) distinct points t0, … , ts ∈ I. For the classes Bp := ∩ Bp, we obtain exact orders of Kolmogorov, linear and pseudo-dimensional widths in the spaces , 0 < q < p < 1:


2013 ◽  
Vol 88 (2) ◽  
pp. 309-319 ◽  
Author(s):  
FENG QI ◽  
PIETRO CERONE ◽  
SEVER S. DRAGOMIR

AbstractNecessary and sufficient conditions are presented for a function involving the divided difference of the psi function to be completely monotonic and for a function involving the ratio of two gamma functions to be logarithmically completely monotonic. From these, some double inequalities are derived for bounding polygamma functions, divided differences of polygamma functions, and the ratio of two gamma functions.


1968 ◽  
Vol 5 (3) ◽  
pp. 693-701 ◽  
Author(s):  
Morris Skibinsky

Let n be a positive integer. Denote by Mn the convex, closed, bounded, and n-dimensional set of all n-tuples (c1, c2,···, cn) such that for some probability measure a on the Borel subsets of the unit interval I = [0,1].


2017 ◽  
Vol 153 (8) ◽  
pp. 1622-1657 ◽  
Author(s):  
Oleksiy Klurman

We give an asymptotic formula for correlations $$\begin{eqnarray}\mathop{\sum }_{n\leqslant x}f_{1}(P_{1}(n))f_{2}(P_{2}(n))\cdots f_{m}(P_{m}(n)),\end{eqnarray}$$ where $f,\ldots ,f_{m}$ are bounded ‘pretentious’ multiplicative functions, under certain natural hypotheses. We then deduce several desirable consequences. First, we characterize all multiplicative functions $f:\mathbb{N}\rightarrow \{-1,+1\}$ with bounded partial sums. This answers a question of Erdős from $1957$ in the form conjectured by Tao. Second, we show that if the average of the first divided difference of the multiplicative function is zero, then either $f(n)=n^{s}$ for $\operatorname{Re}(s)<1$ or $|f(n)|$ is small on average. This settles an old conjecture of Kátai. Third, we apply our theorem to count the number of representations of $n=a+b$, where $a,b$ belong to some multiplicative subsets of $\mathbb{N}$. This gives a new ‘circle method-free’ proof of a result of Brüdern.


1957 ◽  
Vol 53 (2) ◽  
pp. 312-317 ◽  
Author(s):  
Trevor J. Mcminn

1. Introduction. Let 0 < λ < 1 and remove from the closed unit interval the open interval of length λ concentric with the unit interval. From each of the two remaining closed intervals of length ½(1 − λ) remove the concentric open interval of length ½λ(1 − λ). From each of the four remaining closed intervals of length ¼λ(1 − λ)2 remove the concentric open interval of length ¼λ(l − λ)2, etc. The remaining set is a perfect non-dense set of Lebesgue measure zero and is the Cantor set for λ = ⅓. Let Tλr be the Cartesian product of this set with the set similar to it obtained by magnifying it by a factor r > 0. Letting L be Carathéodory linear measure (1) and letting G be Gillespie linear square(2), Randolph(3) has established the following relations:


2009 ◽  
Vol 29 (1) ◽  
pp. 201-221 ◽  
Author(s):  
YUVAL PERES ◽  
PABLO SHMERKIN

AbstractLet Ca be the central Cantor set obtained by removing a central interval of length 1−2a from the unit interval, and then continuing this process inductively on each of the remaining two intervals. We prove that if log b/log a is irrational, then where dim is Hausdorff dimension. More generally, given two self-similar sets K,K′ in ℝ and a scaling parameter s>0, if the dimension of the arithmetic sum K+sK′ is strictly smaller than dim (K)+dim (K′)≤1 (‘geometric resonance’), then there exists r<1 such that all contraction ratios of the similitudes defining K and K′ are powers of r (‘algebraic resonance’). Our method also yields a new result on the projections of planar self-similar sets generated by an iterated function system that includes a scaled irrational rotation.


2020 ◽  
pp. 1-26
Author(s):  
CHRISTOPHE LEURIDAN

Let $\unicode[STIX]{x1D703}$ be an irrational real number. The map $T_{\unicode[STIX]{x1D703}}:y\mapsto (y+\unicode[STIX]{x1D703})\!\hspace{0.6em}{\rm mod}\hspace{0.2em}1$ from the unit interval $\mathbf{I}= [\!0,1\![$ (endowed with the Lebesgue measure) to itself is ergodic. In a short paper [Parry, Automorphisms of the Bernoulli endomorphism and a class of skew-products. Ergod. Th. & Dynam. Sys.16 (1996), 519–529] published in 1996, Parry provided an explicit isomorphism between the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift when $\unicode[STIX]{x1D703}$ is extremely well approximated by the rational numbers, namely, if $$\begin{eqnarray}\inf _{q\geq 1}q^{4}4^{q^{2}}~\text{dist}(\unicode[STIX]{x1D703},q^{-1}\mathbb{Z})=0.\end{eqnarray}$$ A few years later, Hoffman and Rudolph [Uniform endomorphisms which are isomorphic to a Bernoulli shift. Ann. of Math. (2)156 (2002), 79–101] showed that for every irrational number, the measure-preserving map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ is isomorphic to the unilateral dyadic Bernoulli shift. Their proof is not constructive. In the present paper, we relax notably Parry’s condition on $\unicode[STIX]{x1D703}$ : the explicit map provided by Parry’s method is an isomorphism between the map $[T_{\unicode[STIX]{x1D703}},\text{Id}]$ and the unilateral dyadic Bernoulli shift whenever $$\begin{eqnarray}\inf _{q\geq 1}q^{4}~\text{dist}(\unicode[STIX]{x1D703},q^{-1}\mathbb{Z})=0.\end{eqnarray}$$ This condition can be relaxed again into $$\begin{eqnarray}\inf _{n\geq 1}q_{n}^{3}~(a_{1}+\cdots +a_{n})~|q_{n}\unicode[STIX]{x1D703}-p_{n}|<+\infty ,\end{eqnarray}$$ where $[0;a_{1},a_{2},\ldots ]$ is the continued fraction expansion and $(p_{n}/q_{n})_{n\geq 0}$ the sequence of convergents of $\Vert \unicode[STIX]{x1D703}\Vert :=\text{dist}(\unicode[STIX]{x1D703},\mathbb{Z})$ . Whether Parry’s map is an isomorphism for every $\unicode[STIX]{x1D703}$ or not is still an open question, although we expect a positive answer.


Author(s):  
Wu-Teh Hsiang ◽  
Man Kam Kwong

SynopsisSome sufficient conditions are obtained on the coefficient g and the initial values Φ and ψfor the solution ot the non-linear hyperbolic equationto change sign in the first quadrant. An example is given to show that is not sufficient in the linear case.


1978 ◽  
Vol 84 (3) ◽  
pp. 519-530 ◽  
Author(s):  
A. Meir ◽  
J. W. Moon

1. introduction. A set P of disjoint paths in a graph G is a node-covering of G if every node of G is in a path in P. (For definitions not given here see (5) or (11).) The path (node-covering) number of G is the smallest possible number p(G) of paths in such a node-covering of G. The problem of determining the path number of a graph was considered in (1) and (4) for undirected graphs and in (2) for directed graphs. In particular, an algorithm for determining the path number of a tree was given in (1) and (4). If ℱ denotes some family of trees, let μ(n) = μℱ(n) denote the average value of p(T) over all trees T in ℱ with n nodes. Our object here is to show the existence and to determine the value of the path (node-covering) constantfor certain families ℱ of trees. The arguments are similar to those used in (7), (8), and (9), where some other parameters, associated with families of trees, were investigated.


Sign in / Sign up

Export Citation Format

Share Document