Nitrogen Fertilization of Sugarcane in an Intercropping System with Maize and Potato in the Humid Tropical Climate of Mauritius

1996 ◽  
Vol 32 (2) ◽  
pp. 213-218 ◽  
Author(s):  
K. F. Ng Kee Kwong ◽  
G. Umrit ◽  
J. Deville

SUMMARYThe competition for fertilizer nitrogen between sugarcane and a companion crop (maize or potato) grown between the sugarcane rows was studied using nitrogen-15 labelled nitrogen in three field experiments in Mauritius. The effect of the timing of nitrogen application on nitrogen recovery by sugarcane was also investigated. Not more than 15 kg ha−1 of the 120 kg ha−1 nitrogen applied to the sugarcane was taken up by the companion crop but this was compensated for by the uptake of 8 kg ha−1 nitrogen applied to maize or potato. The present recommendations for nitrogen fertilization of pure stand sugarcane were found to be applicable to sugarcane intercropped with non-leguminous food crops. Though fertilizer nitrogen uptake by sugarcane was increased by delaying nitrogen application until after the harvest of the maize and potato, this was not accompanied by an increase in sugarcane yields.

1984 ◽  
Vol 20 (3) ◽  
pp. 251-259 ◽  
Author(s):  
A. B. Waghmaref ◽  
S. P. Singh

SUMMARYSix intercropping systems and four levels of nitrogen were compared at the Indian Agricultural Research Institute, New Delhi, in the summer rainy seasons (July-October) of 1978 and 1979. The maximum increase in sorghum yield was obtained when it was associated with fodder cowpea, followed by association with grain cowpea and greengram. The application of 40, 80 and 120 kg N ha−1 increased sorghum yield by 8.6, 16.1 and 18.2% in 1978 and by 2.9, 8.1 and 14.1% in 1979, respectively, compared with unfertilized sorghum. The nitrogen uptake by sorghum, and by the total system, was greater in sorghum-legume intercropping systems than in sole sorghum. Nitrogen application also increased the nitrogen uptake by sorghum and by the whole system.


1978 ◽  
Vol 91 (1) ◽  
pp. 161-172 ◽  
Author(s):  
B. J. Clutterbuck ◽  
K. Simpson

SummaryThree field experiments in 2 years were made in S.E. Scotland to investigate the effect of water (normal rainfall or irrigation to maintain soil moisture tension between pF 2·0 and 2·5) on the response of the potato crop to nitrogen fertilizer (0, 100, 200 or 300 kg N/ha).Final tuber yield was closely related to leaf area duration. Addition of water reduced the delay in early haulm growth resulting from fertilizer nitrogen application. The beneficial effect of reducing moisture tension could not be related to water per se, nitrate, ammonium or conductivity levels in the fertilizer band or nitrogen uptake. Accumulation of nitrate in the roots and stems + petioles early in the season indicated that the rate of protein synthesis was reduced at high soil moisture tension in the presence of fertilizer nitrogen.In a long growing season (1971, 153 days) there was a significant response of tuber yield to nitrogen, with an increase in yield even at the highest rate tested (300 kg N/ha) and irrigation enhanced this response.In a normal season (1970, ca.130 days) there was a significant irrigation x nitrogen interaction on tuber yield. Irrigation increased the optimum rate of nitrogen from 100 to 200 kg N/ha in one experiment and from nil to 200 kg N/ha in another.Addition of water increased the number of tubers at harvest but the effect of nitrogen was less consistent. Yield increases resulting from application of nitrogen or reduction in soil moisture tension were mainly due to increases in the proportion of large tubers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kailou Liu ◽  
Jiangxue Du ◽  
Yijun Zhong ◽  
Zhe Shen ◽  
Xichu Yu

AbstractNutrient-deficient red soil found in the southern region of China is increasingly being used for potato crops to meet the demand for this staple food. The application of nitrogen fertilizer is necessary to support the production of higher tuber yields; however, the links between nitrate nitrogen and the nitrogen balance in red soil are unknown. A field experiment was conducted in Jiangxi Province in 2017 and 2018 to determine the effects of different nitrogen application rates, 0 kg ha−1 (N0), 60 kg ha−1 (N60), 120 kg ha−1 (N120), 150 kg ha−1 (N150), 180 kg ha−1 (N180), 210 kg ha−1 (N210), and 240 kg ha−1 (N240, the highest rate used by local farmers), on potatoes growing in red soil. Data on tuber yield, crop nitrogen uptake, and the apparent nitrogen balance from the different treatments were collected when potatoes were harvested. Additionally, the content and stock of nitrate nitrogen at different soil depths were also measured. Nitrogen fertilization increased tuber yield but not significantly at application rates higher than 150 kg ha−1. We estimated that the threshold rates of nitrogen fertilizer application were 191 kg ha−1 in 2017 and 227 kg ha−1 in 2018, where the respective tuber yields were 19.7 and 20.4 t ha−1. Nitrogen uptake in potato in all nitrogen fertilization treatments was greater than that in N0 by 61.2–237% and 76.4–284% in 2017 and 2018, respectively. The apparent nitrogen surplus (the amount of nitrogen remaining from any nitrogen input minus nitrogen uptake) increased with increasing nitrogen application rates. The nitrate nitrogen stock at a soil depth of 0–60 cm was higher in the 210 and 240 kg ha−1 nitrogen rate treatments than in the other treatments. Moreover, double linear equations indicated that greater levels of nitrogen surplus increased the nitrate nitrogen content and stock in soils at 0–60 cm depths. Therefore, we estimate that the highest tuber yields of potato can be attained when 191–227 kg ha−1 nitrogen fertilizer is applied to red soil. Thus, the risk of nitrate nitrogen leaching from red soil increases exponentially when the apparent nitrogen balance rises above 94.3–100 kg ha−1.


1975 ◽  
Vol 58 (5) ◽  
pp. 1051-1061
Author(s):  
William P Cochrane ◽  
James F Lawrence ◽  
Young W Lee ◽  
Ronald B Maybury ◽  
Brian P Wilson

Abstract An interlaboratory investigation of technical chlordane residues in food crops was carried out to determine the most practical and consistent method of reporting results. Using a technical chlordane reference standard, 8 gas chromatographic stationary phases were studied for their resolution capabilities. The best separations were obtained with SE-30 and its OV-1 equivalent. Using these columns and electron capture detection, potatoes and carrots from supervised field experiments were analyzed in duplicate and quantitated by using 4 methods of calculation. The data were statistically treated to determine the precision and bias for each method. Also, 1 sample was analyzed in duplicate on 2 different occasions by 6 laboratories to substantiate the initial conclusions. Based on the criterion of high precision it is suggested that a comparison of total area under the chromatogram of the sample with total area of a standard technical chlordane be the method of quantitation. Only peaks which are common to both standard and sample have any significance in this type of calculation.


Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Aloysius Beah ◽  
Alpha Y. Kamara ◽  
Jibrin M. Jibrin ◽  
Folorunso M. Akinseye ◽  
Abdullahi I. Tofa ◽  
...  

This paper assessed the application of the Agricultural Production Systems sIMulator (APSIM)–maize module as a decision support tool for optimizing nitrogen application to determine yield and net return of maize production under current agricultural practices in the Nigeria savannas. The model was calibrated for two maize varieties using data from field experiments conducted under optimum conditions in three locations during the 2017 and 2018 cropping seasons. The model was evaluated using an independent dataset from an experiment conducted under different nitrogen (N) levels in two locations within Southern and Northern Guinea savannas. The results show that model accurately predicted days to 50% anthesis and physiological maturity, leaf area index (LAI), grain yield and total dry matter (TDM) of both varieties with low RMSE and RMSEn (%) values within the range of acceptable statistics indices. Based on 31-year seasonal simulation, optimum mean grain yield of 3941 kg ha−1 for Abuja, and 4549 for Kano was simulated at N rate of 120 kg ha–1 for the early maturing variety 2009EVDT. Meanwhile in Zaria, optimum mean yield of 4173 kg ha–1 was simulated at N rate of 90 kg ha−1. For the intermediate maturing variety, IWDC2SYNF2 mean optimum yields of 5152, 5462, and 4849 kg ha−1, were simulated at N application of 120 kg ha−1 for all the locations. The probability of exceeding attainable mean grain yield of 3000 and 4000 kg ha−1 for 2009EVDT and IWDC2SYNF2, respectively would be expected in 95% of the years with application of 90 kg N ha−1 across the three sites. Following the profitability scenarios analysis, the realistic net incomes of US$ 536 ha–1 for Abuja, and US$ 657 ha−1 for Zaria were estimated at N rate of 90 kg ha−1 and at Kano site, realistic net income of US$ 720 ha–1was estimated at N rate of 120 kg ha−1 for 2009EVDT.For IWDC2SYNF2, realistic net incomes of US$ 870, 974, and 818 ha−1 were estimated at N application of 120 kg ha−1 for Abuja, Zaria, and Kano respectively. The result of this study suggests that 90 kg N ha−1 can be recommended for 2009EVDT and 120 kg N ha–1 for IWDC2SYNF2 in Abuja and Zaria while in Kano, 120 kg N ha−1 should be applied to both varieties to attain optimum yield and profit.


Sign in / Sign up

Export Citation Format

Share Document