scholarly journals Experiments with the maroon-like mutation of Drosophila melanogaster

1977 ◽  
Vol 29 (2) ◽  
pp. 159-170 ◽  
Author(s):  
Moti Nissani ◽  
Chih-Ping Liu

SUMMARYCell lineage analysis of the maroon-like mutation of Drosophila melanogaster revealed the most extensive degree of non-autonomy reported to date in Drosophila: all 1454 gynandromorphs in which X chromosome loss uncovered the ma-l mutation had ma-l+. eye colour. In contrast, among 331 gynandromorphs in which X chromosome loss simultaneously uncovered the vermilion and maroon-like mutations, approximately 16% had v phenotype but with one possible exception all gynandromorphs again had ma-l+ eye colour. These results suggest that very small amounts of the ma-l+ gene product are necessary for wild-type eye colour development and they are therefore compatible with the one cistron–allelic complementation model that has been proposed for the ma-l locus. They also provide the best estimate available to date of In(1)wvc-induced internal mosaicism: 7%. A preliminary attempt to detect DNA-induced transformants among 6 DNA-injected preblastoderm ma-l embryos and at least 80000 of their F1 to F4 descendants has yielded completely negative results. An investigation of the maternal effect which ma-l+ mothers exert on the eye colour of their genetically ma-l offspring revealed that, in contrast to earlier observations, this effect is not universal: some phenotypically ma-l and intermediate ma-l flies were observed in young cultures. The discrepancy between this and earner observations is probably attributable to as yet uncharacterized nutritional deficiencies in the diet of flies used in this experiment. Cytoplasm drawn from blastoderm ma-l+ embryos and injected into the posterior region of ma-l preblastoderm embryos failed to induce eye-colour alterations in all seven flies which survived the treatment. Injection of the contents of embryos of certain genotypes and developmental stages into ma-l pupae 24–48 h old did alter in some instances the eye colour of treated ma-l flies. Various tests strongly suggest that these alterations are not due to injection of a substance that has been stored in the egg during oogensis or that has been produced by the embryo itself prior to injection and they therefore preclude the possibility that a simple in vivo bioassay for the ma-l+ substance has been achieved. Rather, they indicate that the observed eye-colour alterations are due to transplantation of blastoderm-stage embryos which remain active long enough within ma-l hosts to produce and release a substance into the hosts' haemolymph and that this substance in turn induces phenotypic alterations in the hosts' eye colour. When v and ma-l eye colour changes are simultaneously monitored, it appears that injection of embryonic contents into pupae is equally or more effective in modifying the v phenotype than in modifying the ma-l phenotype. Based on these observations, a tentative hypothesis regarding the time of activation of the ma-l+ gene and the relationship between the immediate product of this gene, the maternal substance stored in the egg and the substance released by tissue transplants is proposed.

2003 ◽  
Vol 99 (4) ◽  
pp. 867-875 ◽  
Author(s):  
Sumiko Gamo ◽  
Junya Tomida ◽  
Katsuyuki Dodo ◽  
Dai Keyakidani ◽  
Hitoshi Matakatsu ◽  
...  

Background Various species, e.g., Caenorhabditis elegans, Drosophila melanogaster, and mice, have been used to explore the mechanisms of action of general anesthetics in vivo. The authors isolated a Drosophila mutant, ethas311, that was hypersensitive to diethylether and characterized the calreticulin (crc) gene as a candidate of altered anesthetic sensitivity. Methods Molecular analysis of crc included cloning and sequencing of the cDNA, Northern blotting, and in situ hybridization to accomplish the function of the gene and its mutation. For anesthetic phenotype assay, the 50% anesthetizing concentrations were determined for ethas311, revertants, and double-mutant strains (wild-type crc transgene plus ethas311). Results Expression of the crc 1.4-kb transcript was lower in the mutant ethas311 than in the wild type at all developmental stages. The highest expression at 19 h after pupation was observed in the brain of the wild type but was still low in the mutant at that stage. The mutant showed resistance to isoflurane as well as hypersensitivity to diethylether, whereas it showed the wild phenotype to halothane. Both mutant phenotypes were restored to the wild type in the revertants and double-mutant strains. Conclusion ethas311 is a mutation of low expression of the Drosophila calreticulin gene. The authors demonstrated that hypersensitivity to diethylether and resistance to isoflurane are associated with low expression of the gene. In Drosophila, calreticulin seems to mediate these anesthetic sensitivities, and it is a possible target for diethylether and isoflurane, although the predicted anesthetic targets based on many studies in vitro and in vivo are the membrane proteins, such as ion channels and receptors.


1975 ◽  
Vol 26 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Moti Nissani

SUMMARYSix hundred and ten gynandromorphs were produced in which anXchromosome loss uncovered the vermilion mutation. The mosaic patterns observed indicate that wild type ocelli are incapable of kynurenine production and that, in addition to the eyes, postembryonic kynurenine producing cells originate from two separate regions of the blastoderm. The positions of these regions on the genetic fate map ofDrosophila melanogastercorrespond to the embryonic precursors which give rise to the kynurenine producing cells of the larval fat body and Malpighian tubes.


1986 ◽  
Vol 6 (4) ◽  
pp. 1187-1203 ◽  
Author(s):  
K B Palter ◽  
M Watanabe ◽  
L Stinson ◽  
A P Mahowald ◽  
E A Craig

Monoclonal antibodies have been used to identify three proteins in Drosophila melanogaster that share antigenic determinants with the major heat shock proteins hsp70 and hsp68. While two of the proteins are major proteins at all developmental stages, one heat shock cognate protein, hsc70, is especially enriched in embryos. hsc70 is shown to be the product of a previously identified gene, Hsc4. We have examined the levels of hsp70-related proteins in adult flies and larvae during heat shock and recovery. At maximal induction in vivo, hsp70 and hsp68 never reach the basal levels of the major heat shock cognate proteins. Monoclonal antibodies to hsc70 have been used to localize it to a meshwork of cytoplasmic fibers that are heavily concentrated around the nucleus.


2019 ◽  
Vol 11 (12) ◽  
pp. 425-443 ◽  
Author(s):  
Alireza Zabihihesari ◽  
Arthur J Hilliker ◽  
Pouya Rezai

Abstract The fruit fly or Drosophila melanogaster has been used as a promising model organism in genetics, developmental and behavioral studies as well as in the fields of neuroscience, pharmacology, and toxicology. Not only all the developmental stages of Drosophila, including embryonic, larval, and adulthood stages, have been used in experimental in vivo biology, but also the organs, tissues, and cells extracted from this model have found applications in in vitro assays. However, the manual manipulation, cellular investigation and behavioral phenotyping techniques utilized in conventional Drosophila-based in vivo and in vitro assays are mostly time-consuming, labor-intensive, and low in throughput. Moreover, stimulation of the organism with external biological, chemical, or physical signals requires precision in signal delivery, while quantification of neural and behavioral phenotypes necessitates optical and physical accessibility to Drosophila. Recently, microfluidic and lab-on-a-chip devices have emerged as powerful tools to overcome these challenges. This review paper demonstrates the role of microfluidic technology in Drosophila studies with a focus on both in vivo and in vitro investigations. The reviewed microfluidic devices are categorized based on their applications to various stages of Drosophila development. We have emphasized technologies that were utilized for tissue- and behavior-based investigations. Furthermore, the challenges and future directions in Drosophila-on-a-chip research, and its integration with other advanced technologies, will be discussed.


2019 ◽  
Vol 7 (9) ◽  
pp. 336 ◽  
Author(s):  
Florence Capo ◽  
Alexa Wilson ◽  
Francesca Di Cara

In all metazoans, the intestinal tract is an essential organ to integrate nutritional signaling, hormonal cues and immunometabolic networks. The dysregulation of intestinal epithelium functions can impact organism physiology and, in humans, leads to devastating and complex diseases, such as inflammatory bowel diseases, intestinal cancers, and obesity. Two decades ago, the discovery of an immune response in the intestine of the genetic model system, Drosophila melanogaster, sparked interest in using this model organism to dissect the mechanisms that govern gut (patho) physiology in humans. In 2007, the finding of the intestinal stem cell lineage, followed by the development of tools available for its manipulation in vivo, helped to elucidate the structural organization and functions of the fly intestine and its similarity with mammalian gastrointestinal systems. To date, studies of the Drosophila gut have already helped to shed light on a broad range of biological questions regarding stem cells and their niches, interorgan communication, immunity and immunometabolism, making the Drosophila a promising model organism for human enteric studies. This review summarizes our current knowledge of the structure and functions of the Drosophila melanogaster intestine, asserting its validity as an emerging model system to study gut physiology, regeneration, immune defenses and host-microbiota interactions.


1986 ◽  
Vol 6 (4) ◽  
pp. 1187-1203
Author(s):  
K B Palter ◽  
M Watanabe ◽  
L Stinson ◽  
A P Mahowald ◽  
E A Craig

Monoclonal antibodies have been used to identify three proteins in Drosophila melanogaster that share antigenic determinants with the major heat shock proteins hsp70 and hsp68. While two of the proteins are major proteins at all developmental stages, one heat shock cognate protein, hsc70, is especially enriched in embryos. hsc70 is shown to be the product of a previously identified gene, Hsc4. We have examined the levels of hsp70-related proteins in adult flies and larvae during heat shock and recovery. At maximal induction in vivo, hsp70 and hsp68 never reach the basal levels of the major heat shock cognate proteins. Monoclonal antibodies to hsc70 have been used to localize it to a meshwork of cytoplasmic fibers that are heavily concentrated around the nucleus.


2019 ◽  
Author(s):  
Senlian Hong ◽  
Pankaj Sahai-Hernandez ◽  
David Traver ◽  
Peng Wu

ABSTRACTDynamic turnover of cell-surface glycans is involved in a myriad of biological events, making this process an attractive target for in vivo molecular imaging. The metabolic glycan labeling coupled with ‘bioorthogonal chemistry’ has paved the way for visulizing glycans in living organisms. However, a two-step labeling sequence is required, which is prone to tissue penetration difficulties of the imaging probes. Here, by exploring the substrate promiscuity of endogenous glycosyltransferases, we developed a single-step fluorescent glycan labeling strategy by using fluorophore-tagged analogs of nucleotide sugars directly. Injecting the fluorophore-tagged sialic acid and fucose into the yolk of zebrafish embryos at the one-cell stage enables a systematic imaging of sialylation and fucosylation in live zebrafish embryos at various developmental stages. From these studies, we obtained insights into the role of sialylated and fucosylated glycans in zebrafish hematopoiesis.


2004 ◽  
Vol 378 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Attila FARKAS ◽  
Peter TOMPA ◽  
Éva SCHÁD ◽  
Rita SINKA ◽  
Gáspár JÉKELY ◽  
...  

Calpain B is one of the two calpain homologues in Drosophila melanogaster that are proteolytically active. We studied its activation by Ca2+ both in vitro and in vivo, in Schneider (S2) cells. Activation involves the autolytic cleavage, at two major sites, of the N-terminal segment, the length of which was earlier underestimated. Site-directed mutagenesis at the autolytic sites did not prevent autolysis, but only shifted its sites. Calpain B mRNA was detectable in all developmental stages of the fly. In situ hybridization and immunostaining showed expression in ovaries, embryo and larvae, with high abundance in larval salivary glands. In S2 cells, calpain B was mainly in the cytoplasm and upon a rise in Ca2+ the enzyme adhered to intracellular membranes.


2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.


Sign in / Sign up

Export Citation Format

Share Document