Fly-on-a-Chip: Microfluidics for Drosophila melanogaster Studies

2019 ◽  
Vol 11 (12) ◽  
pp. 425-443 ◽  
Author(s):  
Alireza Zabihihesari ◽  
Arthur J Hilliker ◽  
Pouya Rezai

Abstract The fruit fly or Drosophila melanogaster has been used as a promising model organism in genetics, developmental and behavioral studies as well as in the fields of neuroscience, pharmacology, and toxicology. Not only all the developmental stages of Drosophila, including embryonic, larval, and adulthood stages, have been used in experimental in vivo biology, but also the organs, tissues, and cells extracted from this model have found applications in in vitro assays. However, the manual manipulation, cellular investigation and behavioral phenotyping techniques utilized in conventional Drosophila-based in vivo and in vitro assays are mostly time-consuming, labor-intensive, and low in throughput. Moreover, stimulation of the organism with external biological, chemical, or physical signals requires precision in signal delivery, while quantification of neural and behavioral phenotypes necessitates optical and physical accessibility to Drosophila. Recently, microfluidic and lab-on-a-chip devices have emerged as powerful tools to overcome these challenges. This review paper demonstrates the role of microfluidic technology in Drosophila studies with a focus on both in vivo and in vitro investigations. The reviewed microfluidic devices are categorized based on their applications to various stages of Drosophila development. We have emphasized technologies that were utilized for tissue- and behavior-based investigations. Furthermore, the challenges and future directions in Drosophila-on-a-chip research, and its integration with other advanced technologies, will be discussed.

Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 453
Author(s):  
Ana Filošević Vujnović ◽  
Katarina Jović ◽  
Emanuel Pištan ◽  
Rozi Andretić Waldowski

Non-enzymatic glycation and covalent modification of proteins leads to Advanced Glycation End products (AGEs). AGEs are biomarkers of aging and neurodegenerative disease, and can be induced by impaired neuronal signaling. The objective of this study was to investigate if manipulation of dopamine (DA) in vitro using the model protein, bovine serum albumin (BSA), and in vivo using the model organism Drosophila melanogaster, influences fluorescent AGEs (fAGEs) formation as an indicator of dopamine-induced oxidation events. DA inhibited fAGEs-BSA synthesis in vitro, suggesting an anti-oxidative effect, which was not observed when flies were fed DA. Feeding flies cocaine and methamphetamine led to increased fAGEs formation. Mutants lacking the dopaminergic transporter or the D1-type showed further elevation of fAGEs accumulation, indicating that the long-term perturbation in DA function leads to higher production of fAGEs. To confirm that DA has oxidative properties in vivo, we fed flies antioxidant quercetin (QUE) together with methamphetamine. QUE significantly decreased methamphetamine-induced fAGEs formation suggesting that the perturbation of DA function in vivo leads to increased oxidation. These findings present arguments for the use of fAGEs as a biomarker of DA-associated neurodegenerative changes and for assessment of antioxidant interventions such as QUE treatment.


2003 ◽  
Vol 99 (4) ◽  
pp. 867-875 ◽  
Author(s):  
Sumiko Gamo ◽  
Junya Tomida ◽  
Katsuyuki Dodo ◽  
Dai Keyakidani ◽  
Hitoshi Matakatsu ◽  
...  

Background Various species, e.g., Caenorhabditis elegans, Drosophila melanogaster, and mice, have been used to explore the mechanisms of action of general anesthetics in vivo. The authors isolated a Drosophila mutant, ethas311, that was hypersensitive to diethylether and characterized the calreticulin (crc) gene as a candidate of altered anesthetic sensitivity. Methods Molecular analysis of crc included cloning and sequencing of the cDNA, Northern blotting, and in situ hybridization to accomplish the function of the gene and its mutation. For anesthetic phenotype assay, the 50% anesthetizing concentrations were determined for ethas311, revertants, and double-mutant strains (wild-type crc transgene plus ethas311). Results Expression of the crc 1.4-kb transcript was lower in the mutant ethas311 than in the wild type at all developmental stages. The highest expression at 19 h after pupation was observed in the brain of the wild type but was still low in the mutant at that stage. The mutant showed resistance to isoflurane as well as hypersensitivity to diethylether, whereas it showed the wild phenotype to halothane. Both mutant phenotypes were restored to the wild type in the revertants and double-mutant strains. Conclusion ethas311 is a mutation of low expression of the Drosophila calreticulin gene. The authors demonstrated that hypersensitivity to diethylether and resistance to isoflurane are associated with low expression of the gene. In Drosophila, calreticulin seems to mediate these anesthetic sensitivities, and it is a possible target for diethylether and isoflurane, although the predicted anesthetic targets based on many studies in vitro and in vivo are the membrane proteins, such as ion channels and receptors.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Iulian Antoniac ◽  
Răzvan Adam ◽  
Ana Biță ◽  
Marian Miculescu ◽  
Octavian Trante ◽  
...  

Use of magnesium implants is a new trend in orthopedic research because it has several important properties that recommend it as an excellent resorbable biomaterial for implants. In this study, the corrosion rate and behavior of magnesium alloys during the biodegradation process were determined by in vitro assays, evolution of hydrogen release, and weight loss, and further by in vivo assays (implantation in rabbits’ bone and muscle tissue). In these tests, we also used imaging assessments and histological examination of different tissue types near explants. In our study, we analyzed the Mg-1Ca alloy and all the hypotheses regarding the toxic effects found in in vitro studies from the literature and those from this in vitro study were rejected by the data obtained by the in vivo study. Thus, the Mg-1Ca alloy represents a promising solution for orthopedic surgery at the present time, being able to find applicability in the small bones: hand or foot.


2022 ◽  
Vol 10 (1) ◽  
pp. 119
Author(s):  
Bram Van den Bergh

With an antibiotic crisis upon us, we need to boost antibiotic development and improve antibiotics’ efficacy. Crucial is knowing how to efficiently kill bacteria, especially in more complex in vivo conditions. Indeed, many bacteria harbor antibiotic-tolerant persisters, variants that survive exposure to our most potent antibiotics and catalyze resistance development. However, persistence is often only studied in vitro as we lack flexible in vivo models. Here, I explored the potential of using Drosophila melanogaster as a model for antimicrobial research, combining methods in Drosophila with microbiology techniques: assessing fly development and feeding, generating germ-free or bacteria-associated Drosophila and in situ microscopy. Adult flies tolerate antibiotics at high doses, although germ-free larvae show impaired development. Orally presented E. coli associates with Drosophila and mostly resides in the crop. E. coli shows an overall high antibiotic tolerance in vivo potentially resulting from heterogeneity in growth rates. The hipA7 high-persistence mutant displays an increased antibiotic survival while the expected low persistence of ΔrelAΔspoT and ΔrpoS mutants cannot be confirmed in vivo. In conclusion, a Drosophila model for in vivo antibiotic tolerance research shows high potential and offers a flexible system to test findings from in vitro assays in a broader, more complex condition.


2021 ◽  
Vol 25 (2) ◽  
pp. 132-143
Author(s):  
Amsalu Sisay ◽  
Tegene Negesse ◽  
Ajebu Nurfeta

This study was conducted to evaluate the potential anthelminthic properties of extracts of leaves of indigenous browses (Acacia seyal, Acacia senegal, Acacia tortilis, Millettia ferruginea, and Vernonia amygadalina) based on three in vitro assays. Acetone extracts of browses at different concentrations (75 to 1200 μg/ml, for egg and larvae and 100mg/ml for an adult) were tested on three developmental stages of Haemonchus contortus (eggs, infective larvae, and adult worms) using egg hatch assay (EHA), larval migration inhibition assay (LMIA) and adult worm motility inhibition assay (AMIA). Significant effects were obtained with all five browses but differences were observed depending on the parasitic stages. The effects of five browse extracts on egg hatching were concentration-dependent, the highest (P<0.05) egg hatch inhibition rate was observed at 1200 μg/ml concentration for all browses. All extracts had a higher effect (P<0.01) than that of the negative control, phosphate buffer saline (PBS). In contrast, no concentration-response relationship was found for infective larvae and adult worms, although more potent effects were observed with the highest concentrations. The LMI rate (70%) induced by Vernonia  amygadalina extract, at a concentration of 300 μg/ml, was the highest (P<0.05) of all other browses, even at higher concentrations. The highest LMI rate (62%) induced by Acacia senegal extract at higher concentration, was lower than that of LMI rate (70%) induced by Vernonia amygadalina, at 300 μg/ml concentration. Vernonia amygadalina was found to be highly and rapidly effective against adult worms inducing the highest mortality rate (90%) as soon as 4 hrs after incubation. Overall, the in vitro results suggest that these five  browses do possess anti-parasitic properties and Vernonia amygadalina showed the most effective anti-parasitic property. These effects remain to be confirmed through in vivo study.


Author(s):  
Dr. Y. D. Akhare ◽  
H. A. Patharikar

The fruit fly Drosophila melanogaster has been extensively studied as a model organism for genetic investigation. It also has many characteristics which make it an ideal organism for the study of animal development and behaviour, neurobiology and human genetic disease and condition. Drosophila melanogaster share several basic biological and chemical neurological and physiological similarities with mammals. In the present study, we noted the phenotypic effect of cardamom oil on the different stages of Drosophila melanogaster. The fruit flies were grown on 10-gram culture media supplemented with different concentration of cardamom oil (0.5µl, 1 µl, 2.5 µl). Further, the size and growth of different life stages of Drosophila melanogaster were observed and total protein estimated from it.The increase in the size and protein concentration in different life stages of controlled Drosophila melanogaster were recorded. Cardamom is a highly valued herbal spice used in tropical and subtropical Asia. cardamom is used as a flavouring and cooking spices in both food and drink and as a medicine.


2021 ◽  
Vol 12 ◽  
Author(s):  
Guiyi Li ◽  
Alicia Hidalgo

The human brain can change throughout life as we learn, adapt and age. A balance between structural brain plasticity and homeostasis characterizes the healthy brain, and the breakdown of this balance accompanies brain tumors, psychiatric disorders, and neurodegenerative diseases. However, the link between circuit modifications, brain function, and behavior remains unclear. Importantly, the underlying molecular mechanisms are starting to be uncovered. The fruit-fly Drosophila is a very powerful model organism to discover molecular mechanisms and test them in vivo. There is abundant evidence that the Drosophila brain is plastic, and here we travel from the pioneering discoveries to recent findings and progress on molecular mechanisms. We pause on the recent discovery that, in the Drosophila central nervous system, Toll receptors—which bind neurotrophin ligands—regulate structural plasticity during development and in the adult brain. Through their topographic distribution across distinct brain modules and their ability to switch between alternative signaling outcomes, Tolls can enable the brain to translate experience into structural change. Intriguing similarities between Toll and mammalian Toll-like receptor function could reveal a further involvement in structural plasticity, degeneration, and disease in the human brain.


2004 ◽  
Vol 378 (2) ◽  
pp. 299-305 ◽  
Author(s):  
Attila FARKAS ◽  
Peter TOMPA ◽  
Éva SCHÁD ◽  
Rita SINKA ◽  
Gáspár JÉKELY ◽  
...  

Calpain B is one of the two calpain homologues in Drosophila melanogaster that are proteolytically active. We studied its activation by Ca2+ both in vitro and in vivo, in Schneider (S2) cells. Activation involves the autolytic cleavage, at two major sites, of the N-terminal segment, the length of which was earlier underestimated. Site-directed mutagenesis at the autolytic sites did not prevent autolysis, but only shifted its sites. Calpain B mRNA was detectable in all developmental stages of the fly. In situ hybridization and immunostaining showed expression in ovaries, embryo and larvae, with high abundance in larval salivary glands. In S2 cells, calpain B was mainly in the cytoplasm and upon a rise in Ca2+ the enzyme adhered to intracellular membranes.


2016 ◽  
Vol 60 (9) ◽  
pp. 5427-5436 ◽  
Author(s):  
Thomas T. Thomsen ◽  
Biljana Mojsoska ◽  
João C. S. Cruz ◽  
Stefano Donadio ◽  
Håvard Jenssen ◽  
...  

ABSTRACTWe used the fruit flyDrosophila melanogasteras a cost-effectivein vivomodel to evaluate the efficacy of novel antibacterial peptides and peptoids for treatment of methicillin-resistantStaphylococcus aureus(MRSA) infections. A panel of peptides with known antibacterial activityin vitroand/orin vivowas tested inDrosophila. Although most peptides and peptoids that were effectivein vitrofailed to rescue lethal effects ofS. aureusinfectionsin vivo, we found that two lantibiotics, nisin and NAI-107, rescued adult flies from fatal infections. Furthermore, NAI-107 rescued mortality of infection with the MRSA strain USA300 with an efficacy equivalent to that of vancomycin, a widely applied antibiotic for the treatment of serious MRSA infections. These results establishDrosophilaas a useful model forin vivodrug evaluation of antibacterial peptides.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 230 ◽  
Author(s):  
Iga Wasilewska ◽  
Rishikesh Kumar Gupta ◽  
Oksana Palchevska ◽  
Jacek Kuźnicki

Zebrafish are well-suited for in vivo calcium imaging because of the transparency of their larvae and the ability to express calcium probes in various cell subtypes. This model organism has been used extensively to study brain development, neuronal function, and network activity. However, only a few studies have investigated calcium homeostasis and signaling in zebrafish neurons, and little is known about the proteins that are involved in these processes. Using bioinformatics analysis and available databases, the present study identified 491 genes of the zebrafish Calcium Toolkit (CaTK). Using RNA-sequencing, we then evaluated the expression of these genes in the adult zebrafish brain and found 380 hits that belonged to the CaTK. Based on quantitative real-time polymerase chain reaction arrays, we estimated the relative mRNA levels in the brain of CaTK genes at two developmental stages. In both 5 dpf larvae and adult zebrafish, the highest relative expression was observed for tmbim4, which encodes a Golgi membrane protein. The present data on CaTK genes will contribute to future applications of zebrafish as a model for in vivo and in vitro studies of Ca2+ signaling.


Sign in / Sign up

Export Citation Format

Share Document