scholarly journals Reduced variation at concertina, a heterochromatic locus in Drosophila

1996 ◽  
Vol 68 (2) ◽  
pp. 101-108 ◽  
Author(s):  
Marta L. Wayne ◽  
Martin Kreitman

SummaryIn Drosophila melanogaster and closely related species, polymorphism has been shown to be reduced at loci located in regions of low recombination on the X chromosome and on the fourth chromosome, which does not normally recombine. Thispositive correlation between nucleotide polymorphism level and recombination rate is not predicted by standard neutral theory and therefore must result from natural selection and genetic hitchhiking along the chromosomes. We report here the near-complete absence of variation at concertina (cta), a locus located in the β-heterochromatic base ofchromosome 2L, a region of strongly reduced recombination. A 1.2 kilobase region containing coding regions and introns was sequenced from each of nine lines of D. melanogaster and nine lines of D. simulans representingworldwide collections. Variation is significantly reduced in cta in both species compared with other available loci on the same chromosome. Two analyses of background selection demonstrate that the reduction in variation at cta, considered in combination with other loci on chromosome 2L or alone, is consistent with the background selection model.

Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 791-802
Author(s):  
J A Coyne ◽  
S Aulard ◽  
A Berry

Abstract In(2LR)PL is a large pericentric inversion polymorphic in populations of Drosophila melanogaster on two Indian Ocean islands. This polymorphism is puzzling: because crossing over in female heterokaryotypes produces inviable zygotes, such inversions are thought to be underdominant and should be quickly eliminated from populations. The observed fixation for such inversions among related species has led to the idea that genetic drift can cause chromosome evolution in opposition to natural selection. We found, however, that In(2LR)PL is not underdominant for fertility, as heterokaryotypic females produce perfectly viable eggs. Genetic analysis shows that the lack of underdominance results from the nearly complete absence of crossing over in the inverted region. This phenomenon is probably caused by mechanical and not genetic factors, because crossing over is not suppressed in In(2LR)PL homokaryotypes. Our observations do not support the idea that the fixation of pericentric inversions among closely related species implies the action of genetic drift overcoming strong natural selection in very small populations. If chromosome arrangements vary in their underdominance, it is those with the least disadvantage as heterozygotes, like In(2LR)PL, that will be polymorphic or fixed in natural populations.


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 1197-1206 ◽  
Author(s):  
John K Kelly

The evolutionary processes governing variability within genomic regions of low recombination have been the focus of many studies. Here, I investigate the statistical properties of a measure of intrlocus genetic associations under the assumption that mutations are selectively neutral and sites are completely linked. This measure, denoted ZnS, is based on the squared correlation of allelic identity at pairs of polymorphic sites. Upper bounds for ZnS are determined by simulations. Various deviations from the neutral model, including several different forms of natural selection, will inflate the value of ZnS relative to its neutral theory expectations. Larger than expected values of ZnS are observed in genetic samples from the yellow-ac-scute and Adh regions of Drosophila melanogaster.


Genetics ◽  
1993 ◽  
Vol 134 (2) ◽  
pp. 487-496 ◽  
Author(s):  
J A Coyne ◽  
W Meyers ◽  
A P Crittenden ◽  
P Sniegowski

Abstract Heterozygotes for pericentric inversions are expected to be semisterile because recombination in the inverted region produces aneuploid gametes. Newly arising pericentric inversions should therefore be quickly eliminated from populations by natural selection. The occasional polymorphism for such inversions and their fixation among closely related species have supported the idea that genetic drift in very small populations can overcome natural selection in the wild. We studied the effect of 7 second-chromosome and 30 third-chromosome pericentric inversions on the fertility of heterokaryotypic Drosophila melanogaster females. Surprisingly, fertility was not significantly reduced in many cases, even when the inversion was quite large. This lack of underdominance is almost certainly due to suppressed recombination in inversion heterozygotes, a phenomenon previously observed in Drosophila. In the large sample of third-chromosome inversions, the degree of underdominance depends far more on the position of breakpoints than on the inversion's length. Analysis of these positions shows that this chromosome has a pair of "sensitive sites" near cytological divisions 68 and 92: these sites appear to reduce recombination in a heterozygous inversion whose breakpoints are nearby. There may also be "sensitive sites" near divisions 31 and 49 on the second chromosome. Such sites may be important in initiating synapsis. Because many pericentric inversions do not reduce the fertility of heterozygotes, we conclude that the observed fixation or polymorphism of such rearrangements in nature does not imply genetic drift in very small populations.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1213-1224
Author(s):  
Jean-Philippe Charles ◽  
Carol Chihara ◽  
Shamim Nejad ◽  
Lynn M Riddiford

A 36-kb genomic DNA segment of the Drosophila melanogaster genome containing 12 clustered cuticle genes has been mapped and partially sequenced. The cluster maps at 65A 5-6 on the left arm of the third chromosome, in agreement with the previously determined location of a putative cluster encompassing the genes for the third instar larval cuticle proteins LCP5, LCP6 and LCP8. This cluster is the largest cuticle gene cluster discovered to date and shows a number of surprising features that explain in part the genetic complexity of the LCP5, LCP6 and LCP8 loci. The genes encoding LCP5 and LCP8 are multiple copy genes and the presence of extensive similarity in their coding regions gives the first evidence for gene conversion in cuticle genes. In addition, five genes in the cluster are intronless. Four of these five have arisen by retroposition. The other genes in the cluster have a single intron located at an unusual location for insect cuticle genes.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1843-1851 ◽  
Author(s):  
John Parsch

AbstractIntron sizes show an asymmetrical distribution in a number of organisms, with a large number of “short” introns clustered around a minimal intron length and a much broader distribution of longer introns. In Drosophila melanogaster, the short intron class is centered around 61 bp. The narrow length distribution suggests that natural selection may play a role in maintaining intron size. A comparison of 15 orthologous introns among species of the D. melanogaster subgroup indicates that, in general, short introns are not under greater DNA sequence or length constraints than long introns. There is a bias toward deletions in all introns (deletion/insertion ratio is 1.66), and the vast majority of indels are of short length (<10 bp). Indels occurring on the internal branches of the phylogenetic tree are significantly longer than those occurring on the terminal branches. These results are consistent with a compensatory model of intron length evolution in which slightly deleterious short deletions are frequently fixed within species by genetic drift, and relatively rare larger insertions that restore intron length are fixed by positive selection. A comparison of paralogous introns shared among duplicated genes suggests that length constraints differ between introns within the same gene. The janusA, janusB, and ocnus genes share two short introns derived from a common ancestor. The first of these introns shows significantly fewer indels than the second intron, although the two introns show a comparable number of substitutions. This indicates that intron-specific selective constraints have been maintained following gene duplication, which preceded the divergence of the D. melanogaster species subgroup.


Genetics ◽  
1974 ◽  
Vol 77 (3) ◽  
pp. 569-589
Author(s):  
Martin L Tracey ◽  
Francisco J Ayala

ABSTRACT Recent studies of genetically controlled enzyme variation lead to an estimation that at least 30 to 60% of the structural genes are polymorphic in natural populations of many vertebrate and invertebrate species. Some authors have argued that a substantial proportion of these polymorphisms cannot be maintained by natural selection because this would result in an unbearable genetic load. If many polymorphisms are maintained by heterotic natural selection, individuals with much greater than average proportion of homozygous loci should have very low fitness. We have measured in Drosophila melanogaster the fitness of flies homozygous for a complete chromosome relative to normal wild flies. A total of 37 chromosomes from a natural population have been tested using 92 experimental populations. The mean fitness of homozygous flies is 0.12 for second chromosomes, and 0.13 for third chromosomes. These estimates are compatible with the hypothesis that many (more than one thousand) loci are maintained by heterotic selection in natural populations of D. melanogaster.


Genetics ◽  
1997 ◽  
Vol 147 (2) ◽  
pp. 915-925 ◽  
Author(s):  
Yun-Xin Fu

The main purpose of this article is to present several new statistical tests of neutrality of mutations against a class of alternative models, under which DNA polymorphisms tend to exhibit excesses of rare alleles or young mutations. Another purpose is to study the powers of existing and newly developed tests and to examine the detailed pattern of polymorphisms under population growth, genetic hitchhiking and background selection. It is found that the polymorphic patterns in a DNA sample under logistic population growth and genetic hitchhiking are very similar and that one of the newly developed tests, FS, is considerably more powerful than existing tests for rejecting the hypothesis of neutrality of mutations. Background selection gives rise to quite different polymorphic patterns than does logistic population growth or genetic hitchhiking, although all of them show excesses of rare alleles or young mutations. We show that Fu and Li's tests are among the most powerful tests against background selection. Implications of these results are discussed.


Sign in / Sign up

Export Citation Format

Share Document