scholarly journals Seasonality and genetic architecture of development time and body size of the birch feeding sawfly Priophorus pallipes

2001 ◽  
Vol 78 (1) ◽  
pp. 31-40 ◽  
Author(s):  
ANTTI KAUSE ◽  
JEAN-PHILIPPE MORIN

We tested, using the sawfly Priophorus pallipes feeding on leaves of mountain birch, whether the expression of genetic (co)variation of larval development time and body size can be altered by exposing larvae to diets with differential seasonal changes in quality. In nature, larvae feed mainly on mature leaves, but occasionally they are forced to consume senescing leaves. Sixty families were assayed on three experimentally simulated diets: mature leaves of high quality, senescing leaves of rapidly declining quality, and senesced leaves of low quality. The intuitively obvious positive phenotypic and genetic correlations between development time and final mass were observed when the larvae consumed leaves of stable high quality, but low and declining food quality prevented long-growing individuals and families from achieving high final mass, switching the correlations to close to zero or negative in these treatments. The amount of genetic variation for body size showed a non-linear change across the diet quality gradient, whereas genetic variation for development time increased with decreasing diet quality. The among-trait difference in the degree reaction norms crossed along the diet gradient caused the changes in the expression of genetic (co)variation within the environments. Our results show that seasonally varying diet quality induces dramatic changes in the genetic (co)variation of development time and body size, and that simultaneous analysis of reaction norms and environment-specific expression of genetic (co)variation is necessary for the understanding of the genetic characteristics underlying the construction of phenotypes in heterogeneous environments.

2019 ◽  
Author(s):  
WU Blanckenhorn ◽  
V Llaurens ◽  
C Reim ◽  
Y Teuschl ◽  
E Postma

SUMMARYThe evolutionary potential of organisms depends on the presence of sufficient genetic variation for traits subject to selection, as well as on the genetic covariances among them. While genetic variation ultimately derives from mutation, theory predicts the depletion of genetic (co)variation under consistent directional or stabilizing selection in natural populations. We estimated and compared additive genetic (co)variances for several standard life history traits, including some for which this has never been assessed, before and after 24 generations of artificial selection on male size in the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae) using a series of standard half-sib breeding experiments. As predicted, genetic variances (VA), heritabilities (h2) and evolvabilities (IA) of body size, development time, first clutch size, and female age at first clutch were lower after selection. As independent selection lines were crossed prior to testing, we can rule out that this reduction is due to genetic drift. In contrast to the variances, and against expectation, the additive genetic correlations between the sexes for development time and body size remained strong and positive (rA = 0.8–0.9), while the genetic correlation between these traits within the sexes tended to strengthen (but not significantly so). Our study documents that the effect of selection on genetic variance is predictable, whereas that on genetic correlations is not.


Evolution ◽  
2001 ◽  
Vol 55 (10) ◽  
pp. 1992-2001 ◽  
Author(s):  
Antti Kause ◽  
Irma Saloniemi ◽  
Jean-Philippe Morin ◽  
Erkki Haukioja ◽  
Sinikka Hanhimäki ◽  
...  

Evolution ◽  
2001 ◽  
Vol 55 (10) ◽  
pp. 1992 ◽  
Author(s):  
Antti Kause ◽  
Irma Saloniemi ◽  
Jean-Philippe Morin ◽  
Erkki Haukioja ◽  
Sinikka Hanhimäki ◽  
...  

2009 ◽  
Vol 5 (5) ◽  
pp. 628-631 ◽  
Author(s):  
Kentaro Morita ◽  
Jun-ichi Tsuboi ◽  
Toru Nagasawa

The relationship between body size and the probability of maturing, often referred to as the probabilistic maturation reaction norm (PMRN), has been increasingly used to infer genetic variation in maturation schedule. Despite this trend, few studies have directly evaluated plasticity in the PMRN. A transplant experiment using white-spotted charr demonstrated that the PMRN for precocious males exhibited plasticity. A smaller threshold size at maturity occurred in charr inhabiting narrow streams where more refuges are probably available for small charr, which in turn might enhance the reproductive success of sneaker precocious males. Our findings suggested that plastic effects should clearly be included in investigations of variation in PMRNs.


Genetics ◽  
1995 ◽  
Vol 141 (1) ◽  
pp. 181-189
Author(s):  
A Leibowitz ◽  
M Santos ◽  
A Fontdevila

Abstract An attempt was made to assess whether the phenotypic differences in body size (as measured by wing length) between wild-caught mating and single Drosophila buzzatii males could be attributed to genetic differences between the samples. Mating males were found to be larger and less variable than a random sample of the population. The progeny of the mating males (produced by crossing to a random female from a stock derived from the same population) were on average larger than those of the single males, but not significantly so (P = 0.063), and less phenotypically variable. This difference in variance between the samples suggests that there are indeed genetic differences between the paternal samples but tests for significant differences in the additive genetic component of variance proved inconclusive. For both samples it was found that while the ratio of additive genetic variation in the laboratory to phenotypic variation in the field yielded estimates of ĥs2(N) congruent to 10% the regression of offspring reared in the laboratory on parents from the wild was not significantly different from zero. In addition, it was found that the average development time of the progeny of the mating males is shorter than that of the random sample.


Author(s):  
Katrine K. Lund-Hansen ◽  
Jessica K. Abbott ◽  
Edward H. Morrow

AbstractA handful of studies have investigated sexually antagonistic constraints on obtaining sex-specific fitness optima, though exclusively through male-genome-limited evolution experiments. In this paper, we established a female-limited X chromosome evolution experiment, where we used an X chromosome balancer to enforce the inheritance of the X chromosome through the matriline, thus removing exposure to male selective constraints. This approach eliminates the effects of sexually antagonistic selection on the X chromosome, permitting evolution towards a single sex-specific optimum. After multiple generations of selection, we found strong evidence that body size and development time had moved towards a female-specific optimum, whereas reproductive fitness and locomotion activity remained unchanged. The changes in body size and development time are consistent with previous results, and suggest that the X chromosome is enriched for sexually antagonistic genetic variation controlling these traits. The lack of change in reproductive fitness and locomotion activity could be due to a number of mutually non-exclusive explanations, including a lack of sexually antagonistic variance on the X chromosome or confounding effects of the use of the balancer chromosome. This study is the first to employ female-genome-limited selection and adds to the understanding of the complexity of sexually antagonistic genetic variation.


2021 ◽  
pp. 1-9
Author(s):  
Sarah H Kehoe ◽  
Stephanie V Wrottesley ◽  
Lisa Ware ◽  
Alessandra Prioreschi ◽  
Catherine Draper ◽  
...  

Abstract Objective: To determine whether food security, diet diversity and diet quality are associated with anthropometric measurements and body composition among women of reproductive age. The association between food security and anaemia prevalence was also tested. Design: Secondary analysis of cross-sectional data from the Healthy Life Trajectories Initiative (HeLTI) study. Food security and dietary data were collected by an interviewer-administered questionnaire. Hb levels were measured using a HemoCue, and anaemia was classified as an altitude-adjusted haemoglobin level < 12·5 g/dl. Body size and composition were assessed using anthropometry and dual-energy x-ray absorptiometry. Setting: The urban township of Soweto, Johannesburg, South Africa. Participants: Non-pregnant women aged 18–25 years (n 1534). Results: Almost half of the women were overweight or obese (44 %), and 9 % were underweight. Almost a third of women were anaemic (30 %). The prevalence rates of anaemia and food insecurity were similar across BMI categories. Food insecure women had the least diverse diets, and food security was negatively associated with diet quality (food security category v. diet quality score: B = –0·35, 95 % CI –0·70, –0·01, P = 0·049). Significant univariate associations were observed between food security and total lean mass. However, there were no associations between food security and body size or composition variables in multivariate models. Conclusions: Our data indicate that food security is an important determinant of diet quality in this urban-poor, highly transitioned setting. Interventions to improve maternal and child nutrition should recognise both food security and the food environment as critical elements within their developmental phases.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1853
Author(s):  
María A. Reyes-López. ◽  
Carla P. González-Leyva ◽  
Ameyalli M. Rodríguez-Cano ◽  
Carolina Rodríguez-Hernández ◽  
Eloisa Colin-Ramírez ◽  
...  

A high-quality diet during pregnancy may have positive effects on fetal growth and nutritional status at birth, and it may modify the risk of developing chronic diseases later in life. The aim of this study was to evaluate the association between diet quality and newborn nutritional status in a group of pregnant Mexican women. As part of the ongoing Mexican prospective cohort study, OBESO, we studied 226 healthy pregnant women. We adapted the Alternated Healthy Eating Index-2010 for pregnancy (AHEI-10P). The association between maternal diet and newborn nutritional status was investigated by multiple linear regression and logistic regression models. We applied three 24-h recalls during the second half of gestation. As the AHEI-10P score improved by 5 units, the birth weight and length increased (β = 74.8 ± 35.0 g and β = 0.3 ± 0.4 cm, respectively, p < 0.05). Similarly, the risk of low birth weight (LBW) and small for gestational age (SGA) decreased (OR: 0.47, 95%CI: 0.27–0.82 and OR: 0.55, 95%CI: 0.36–0.85, respectively). In women without preeclampsia and/or GDM, the risk of stunting decreased as the diet quality score increased (+5 units) (OR: 0.62, 95%IC: 0.40–0.96). A high-quality diet during pregnancy was associated with a higher newborn size and a reduced risk of LBW and SGA in this group of pregnant Mexican women.


Genetics ◽  
1995 ◽  
Vol 140 (3) ◽  
pp. 1149-1159
Author(s):  
M W Blows ◽  
M B Sokolowski

Abstract Experimental lines of Drosophila melanogaster derived from a natural population, which had been isolated in the laboratory for approximately 70 generations, were crossed to determine if the expression of additive, dominance and epistatic genetic variation in development time and viability was associated with the environment. No association was found between the level of additive genetic effects and environmental value for either trait, but nonadditive genetic effects increased at both extremes of the environmental range for development time. The expression of high levels of dominance and epistatic genetic variation at environmental extremes may be a general expectation for some traits. The disruption of the epistatic gene complexes in the parental lines resulted in hybrid breakdown toward faster development and there was some indication of hybrid breakdown toward higher viability. A combination of genetic drift and natural selection had therefore resulted in different epistatic gene complexes being selected after approximately 70 generations from a common genetic base. After crossing, the hybrid populations were observed for 10 generations. Epistasis contributed on average 12 hr in development time. Fluctuating asymmetry in sternopleural bristle number also evolved in the hybrid populations, decreasing by &gt; 18% in the first seven generations after hybridization.


Sign in / Sign up

Export Citation Format

Share Document