scholarly journals An intervarietal genetic linkage map of Indian bread wheat (Triticum aestivum L.) and QTL maps for some metric traits

2007 ◽  
Vol 89 (3) ◽  
pp. 165-179 ◽  
Author(s):  
E. NALINI ◽  
S. G. BHAGWAT ◽  
N. JAWALI

SummaryBread wheat (Triticum aestivum L.) exhibits very narrow genetic diversity and hence there is high relatedness among cultivated varieties. However, a population generated from an intervarietal cross, with the parents differing in a large number of traits, could lead to the generation of QTL maps which will be useful in practice. In this report a genetic linkage map of wheat is constructed using a cross between two Indian bread wheat varieties: Sonalika and Kalyansona. The linkage map consisted of 236 markers and spanned a distance of 3639 cM, with 1211·2 cM for the A genome, 1669·2 cM for the B genome, 192·4 cM for the D genome and 566·2 cM for unassigned groups. Linkage analysis defined 37 linkage groups of which 24 were assigned to 17 chromosomes. The genetic map was used to identify QTLs by composite internal mapping (CIM) for three metric traits, viz. culm length (CL), flag leaf length (FLL) and flag leaf breadth (FLB). Of 25 QTLs identified in this study, 15 have not been reported previously. Multitrait CIM (MCIM) analysis was carried out for traits that were significantly correlated such as FLB–FLL and CL–FLB–FLL. Detection of a large number of QTLs for the three traits analysed suggests that in parent cultivars that are not too diverse, the differences at genetic level detected as polymorphisms may be mostly associated with QTLs for the observed differences.

1999 ◽  
Vol 99 (1-2) ◽  
pp. 16-26 ◽  
Author(s):  
E. V. Boyko ◽  
K. S. Gill ◽  
L. Mickelson-Young ◽  
S. Nasuda ◽  
W. J. Raupp ◽  
...  

2003 ◽  
Vol 107 (7) ◽  
pp. 1235-1242 ◽  
Author(s):  
S. Paillard ◽  
T. Schnurbusch ◽  
M. Winzeler ◽  
M. Messmer ◽  
P. Sourdille ◽  
...  

2015 ◽  
Vol 14 (9) ◽  
pp. 1697-1705 ◽  
Author(s):  
Hui-jie ZHAI ◽  
Zhi-yu FENG ◽  
Xin-ye LIU ◽  
Xue-jiao CHENG ◽  
Hui-ru PENG ◽  
...  

Genome ◽  
2012 ◽  
Vol 55 (6) ◽  
pp. 417-427 ◽  
Author(s):  
A. Gadaleta ◽  
A. Giancaspro ◽  
S.L. Giove ◽  
S. Zacheo ◽  
O. Incerti ◽  
...  

The aims of the present study were to provide deletion maps for wheat ( Triticum aestivum L.) chromosomes 5A and 5B and a detailed genetic map of chromosome 5A enriched with popular microsatellite markers, which could be compared with other existing maps and useful for mapping major genes and quantitative traits loci (QTL). Physical mapping of 165 gSSR and EST–SSR markers was conducted by amplifying each primer pair on Chinese Spring, aneuploid lines, and deletion lines for the homoeologous group 5 chromosomes. A recombinant inbred line (RIL) mapping population that is recombinant for only chromosome 5A was obtained by crossing the wheat cultivar Chinese Spring and the disomic substitution line Chinese Spring-5A dicoccoides and was used to develop a genetic linkage map of chromosome 5A. A total of 67 markers were found polymorphic between the parental lines and were mapped in the RIL population. Sixty-three loci and the Q gene were clustered in three linkage groups ordered at a minimum LOD score of 5, while four loci remained unlinked. The whole genetic 5A chromosome map covered 420.2 cM, distributed among three linkage groups of 189.3, 35.4, and 195.5 cM. The EST sequences located on chromosomes 5A and 5B were used for comparative analysis against Brachypodium distachyon (L.) P. Beauv. and rice ( Oryza sativa L.) genomes to resolve orthologous relationships among the genomes of wheat and the two model species.


Genetika ◽  
2017 ◽  
Vol 49 (3) ◽  
pp. 1081-1093 ◽  
Author(s):  
Lingbo Zhao ◽  
Zhang Li ◽  
Jipeng Qu ◽  
Yan Yu ◽  
Lu Lu ◽  
...  

Novel fluorescent sequence-related amplified polymorphism (FSRAP) markers were developed based on the SRAP molecular marker. Then, the FSRAP markers were used to construct the genetic map of a wheat (Triticum aestivumL.) recombinant inbred line population derived from a Chuanmai 42?Chuannong 16 cross. Reproducibility and polymorphism tests indicated that the FSRAP markers have repeatability and better reflect the polymorphism of wheat varieties compared with SRAP markers. A total of 430 polymorphic loci between Chuanmai 42 and Chuannong 16 were detected with 189 FSRAP primer combinations. A total of 281 FSARP markers and 39 SSR markers re classified into 20 linkage groups. The maps spanned a total length of 2499.3cM with an average distance of 7.81cM between markers. A total of 201 markers were mapped on the B genome and covered a distance of 1013cM. On the A genome, 84 markers were mapped and covered a distance of 849.6cM. On the D genome, however, only 35 markers were mapped and covered a distance of 636.7cM. No FSRAP markers were distributed on the 7D chromosome. The results of the present study revealed that the novel FSRAP markers can be used to generate dense, uniform genetic maps of wheat.


Author(s):  
Christopher Navarro ◽  
Yang Yang ◽  
Amita Mohan ◽  
Nathan Grant ◽  
Kulvinder S. Gill ◽  
...  

Genome ◽  
2008 ◽  
Vol 51 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Keita Suwabe ◽  
Colin Morgan ◽  
Ian Bancroft

An integrated linkage map between B. napus and B. rapa was constructed based on a total of 44 common markers comprising 41 SSR (33 BRMS, 6 Saskatoon, and 2 BBSRC) and 3 SNP/indel markers. Between 3 and 7 common markers were mapped onto each of the linkage groups A1 to A10. The position and order of most common markers revealed a high level of colinearity between species, although two small regions on A4, A5, and A10 revealed apparent local inversions between them. These results indicate that the A genome of Brassica has retained a high degree of colinearity between species, despite each species having evolved independently after the integration of the A and C genomes in the amphidiploid state. Our results provide a genetic integration of the Brassica A genome between B. napus and B. rapa. As the analysis employed sequence-based molecular markers, the information will accelerate the exploitation of the B. rapa genome sequence for the improvement of oilseed rape.


BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinsong Xu ◽  
Xiaoju Qian ◽  
Xiaofeng Wang ◽  
Ruiyuan Li ◽  
Xiaomao Cheng ◽  
...  

Genome ◽  
2012 ◽  
Vol 55 (12) ◽  
pp. 813-823 ◽  
Author(s):  
Berisso Kebede ◽  
Kuljit Cheema ◽  
David L. Greenshields ◽  
Changxi Li ◽  
Gopalan Selvaraj ◽  
...  

A genetic linkage map of Brassica rapa L. was constructed using recombinant inbred lines (RILs) derived from a cross between yellow-seeded cultivar Sampad and a yellowish brown seeded inbred line 3-0026.027. The RILs were evaluated for seed color under three conditions: field plot, greenhouse, and controlled growth chambers. Variation for seed color in the RILs ranged from yellow, like yellow sarson, to dark brown/black even though neither parent had shown brown/black colored seeds. One major QTL (SCA9-2) and one minor QTL (SCA9-1) on linkage group (LG) A9 and two minor QTL (SCA3-1, SCA5-1) on LG A3 and LG A5, respectively, were detected. These collectively explained about 67% of the total phenotypic variance. SCA9-2 mapped in the middle of LG A9, explained about 55% phenotypic variance, and consistently expressed in all environments. The second QTL on LG A9 was ∼70 cM away from SCA9-2, suggesting that independent assortment of these QTLs is possible. A digenic epistatic interaction was found between the two main effect QTL on LG A9; and the epistasis × environment interaction was nonsignificant, suggesting stability of the interaction across the environments. The QTL effect on LG A9 was validated using simple sequence repeat (SSR) markers from the two QTL regions of this LG on a B1S1 population (F1 backcrossed to Sampad followed by self-pollination) segregating for brown and yellow seed color, and on their self-pollinated progenies (B1S2). The SSR markers from the QTL region SCA9-2 showed a stronger linkage association with seed color as compared with the marker from SCA9-1. This suggests that the QTL SCA9-2 is the major determinant of seed color in the A genome of B. rapa.


Sign in / Sign up

Export Citation Format

Share Document