The geometry and structural evolution of a crustal-scale Caledonian fold complex: the Ballybofey Nappe, northwest Ireland

1994 ◽  
Vol 131 (4) ◽  
pp. 519-537 ◽  
Author(s):  
G. I. Alsop

AbstractThe gross geometries exhibited by crustal-scale fold nappes are considered a consequence of both original stratigraphic relationships associated with sub-basin configuration, coupled with the nature of the structural regime and tectonic processes involved in the generation of the nappe pile. The Neo-Proterozoic Dalradian metasediments of northwestern Ireland provide a well-constrained and correlatable stratigraphy which defines a sequence of sub-reclined, tight-isoclinal Caledonian (c. 460 Ma) fold nappes. Within this fold complex, the dominant structure is the crustal-scale Ballybofey Nappe, which may be traced for 40 km along strike and is responsible for a regional (500 km2) stratigraphie inversion. The gentle, NE-plunging attitude of this fold results in a complete spectrum of tectonic levels and deformation gradients being exposed. Relatively low strains in the upper fold limb gradually increase down through the nappe, resulting in the generation of composite foliations and lineations and the development of a 10 km thick shear zone which culminates in a high strain basal detachment with underlying pre-Caledonian basement. The Ballybofey Nappe nucleated and propagated along a major zone of lateral sedimentary facies variation, coincident with the margin of a major Dalradian sub-basin. The large amplitude of the nappe is strongly influenced by the lateral heterogeneity within the metasedimentary sequence, and is associated with a minimum of 25–30 km ESE-directed translation concentrated within the overturned limb. Additional significant displacement is also focused along the basal décollement. Generation of the nappe complex resulted in significant crustal thickening and amphibolite facies metamorphism consistent with 15–18 km of burial, induced by a sequence of nappes propagating in the direction of overshear. The ESE-directed translation of the major fold nappes is away from the Caledonian foreland and a gravity-driven mechanism of nappe emplacement is suggested. Rigorous structural analysis within the cohesive stratigraphie framework enables relationships between the tectonic evolution and stratigraphic patterns to be distinguished, thus allowing models of fold nappe generation and mid-crustal deformation to be evaluated.

2018 ◽  
Author(s):  
Carly Faber ◽  
Holger Stünitz ◽  
Deta Gasser ◽  
Petr Jeřábek ◽  
Katrin Kraus ◽  
...  

Abstract. This study investigates the Caledonian metamorphic and tectonic evolution in northern Norway, examining the structure and tectonostratigraphy of the Reisa Nappe Complex (RNC; from bottom to top, Vaddas, Kåfjord and Nordmannvik nappes). Structural data, phase equilibrium modelling, and U-Pb zircon and titanite geochronology are used to constrain the timing and P-T conditions of deformation and metamorphism that formed the nappes and facilitated crustal thickening during continental collision. Five samples taken from different parts of the RNC reveal an anticlockwise P-T path attributed to the effects of early Silurian heating followed by thrusting. An early Caledonian S1 foliation in the Nordmannvik Nappe records kyanite-grade partial melting at ~ 760–790 °C and ~ 9.4–11 kbar. Leucosomes formed at 439 ± 2 Ma (U-Pb zircon) in fold axial planes in the Nordmannvik Nappe indicate that compressional deformation initiated while the rocks were still partially molten. This stage was followed by pervasive solid-state shearing as the rocks cooled and solidified, forming the S2 foliation at 680–730 °C and 9.5–10.9 kbar. Multistage titanite growth in the Nordmannvik Nappe records this extended metamorphism between 444 and 427 Ma. In the underlying Kåfjord Nappe, garnet cores record lower P-T (590–610 °C and 5.5–6.8 kbar) but a similar geothermal gradient as the S1 migmatitic event in the Nordmannvik Nappe, indicating formation at a higher relative position in the crust. S2 shearing in the Kåfjord Nappe occurred at 580–605 °C and 9.2–10.1 kbar, indicating a considerable pressure increase during nappe stacking. Gabbro intruded in the Vaddas Nappe at 439 ± 1 Ma, synchronously with migmatization in the Nordmannvik Nappe. In the Vaddas Nappe S2 shearing occurred at 630–640 ºC and 11.7–13 kbar. Titanite growth along the lower RNC boundary records S2-shearing at 432 ± 6 Ma. It emerges that early Silurian heating (~ 440 Ma), probably resulting from large-scale magma underplating, initiated partial melting that weakened the lower crust, which facilitated dismembering of the crust into individual nappe units. This tectonic style contrasts subduction of mechanically strong continental crust to great depths.


Solid Earth ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 117-148 ◽  
Author(s):  
Carly Faber ◽  
Holger Stünitz ◽  
Deta Gasser ◽  
Petr Jeřábek ◽  
Katrin Kraus ◽  
...  

Abstract. This study investigates the tectonostratigraphy and metamorphic and tectonic evolution of the Caledonian Reisa Nappe Complex (RNC; from bottom to top: Vaddas, Kåfjord, and Nordmannvik nappes) in northern Troms, Norway. Structural data, phase equilibrium modelling, and U-Pb zircon and titanite geochronology are used to constrain the timing and pressure–temperature (P–T) conditions of deformation and metamorphism during nappe stacking that facilitated crustal thickening during continental collision. Five samples taken from different parts of the RNC reveal an anticlockwise P–T path attributed to the effects of early Silurian heating (D1) followed by thrusting (D2). At ca. 439 Ma during D1 the Nordmannvik Nappe reached the highest metamorphic conditions at ca. 780 ∘C and ∼9–11 kbar inducing kyanite-grade partial melting. At the same time the Kåfjord Nappe was at higher, colder, levels of the crust ca. 600 ∘C, 6–7 kbar and the Vaddas Nappe was intruded by gabbro at > 650 ∘C and ca. 6–9 kbar. The subsequent D2 shearing occurred at increasing pressure and decreasing temperatures ca. 700 ∘C and 9–11 kbar in the partially molten Nordmannvik Nappe, ca. 600 ∘C and 9–10 kbar in the Kåfjord Nappe, and ca. 640 ∘C and 12–13 kbar in the Vaddas Nappe. Multistage titanite growth in the Nordmannvik Nappe records this evolution through D1 and D2 between ca. 440 and 427 Ma, while titanite growth along the lower RNC boundary records D2 shearing at 432±6 Ma. It emerges that early Silurian heating (ca. 440 Ma) probably resulted from large-scale magma underplating and initiated partial melting that weakened the lower crust, which facilitated dismembering of the crust into individual thrust slices (nappe units). This tectonic style contrasts with subduction of mechanically strong continental crust to great depths as seen in, for example, the Western Gneiss Region further south.


2012 ◽  
Vol 63 (1) ◽  
pp. 13-32 ◽  
Author(s):  
Roberta Prokešová ◽  
Dušan Plašienka ◽  
Rastislav Milovský

Structural pattern and emplacement mechanisms of the Krížna cover nappe (Central Western Carpathians)The Central Western Carpathians are characterized by both the thick- and thin-skinned thrust tectonics that originated during the Cretaceous. The Krížna Unit (Fatric Superunit) with a thickness of only a few km is the most widespread cover nappe system that completely overthrusts the Tatric basement/cover superunit over an area of about 12 thousands square km. In searching for a reliable model of its origin and emplacement, we have collected structural data throughout the nappe body from its hinterland backstop (Veporic Superunit) to its frontal parts. Fluid inclusion (FI) data from carbonate cataclastic rocks occurring at the nappe sole provided useful information about the p-T conditions during the nappe transport. The crucial phenomena considered for formulation of our evolutionary model are: (1) the nappe was derived from a broad rifted basinal area bounded by elevated domains; (2) the nappe body is composed of alternating, rheologically very variable sedimentary rock complexes, hence creating a mechanically stratified multilayer; (3) presence of soft strata serving as décollement horizons; (4) stress and strain gradients increasing towards the backstop; (5) progressive internal deformation at very low-grade conditions partitioned into several deformation stages reflecting varying external constraints for the nappe movement; (6) a very weak nappe sole formed by cataclasites indicating fluid-assisted nappe transport during all stages; (7) injection of hot overpressured fluids from external sources (deformed basement units) facilitating frontal ramp overthrusting under supralithostatic conditions. It was found that no simple mechanical model can be applied, but that all known principal emplacement mechanisms and driving forces temporarily participated in progressive structural evolution of the nappe. The rear compression operated during the early stages, when the sedimentary succession was detached, shortened and transported over the frontal ramp. Subsequently, gravity spreading and gliding governed the final nappe emplacement over the unconstrained basinal foreland.


2019 ◽  
Vol 70 (6) ◽  
pp. 494-511 ◽  
Author(s):  
Grzegorz Ziemniak ◽  
Karolina Kośmińska ◽  
Igor Petrík ◽  
Marian Janák ◽  
Katarzyna Walczak ◽  
...  

Abstract The northern extent of the Scandinavian Caledonides includes the Skibotn Nappe Complex of still debated structural position. This paper is focused on part of this complex and presents new U–Th–total Pb monazite dating results for the migmatitic gneiss of the Kåfjord Nappe. The rocks show mineral assemblage of garnet + plagioclase + biotite + white mica + kyanite + rutile ± K-feldspar ± sillimanite. Thermodynamic modelling suggests that garnet was stable at P–T conditions of ca. 680–720 °C and 8–10 kbars in the stability field of kyanite and the rocks underwent partial melting during exhumation following a clockwise P–T path. This episode is dated to 444 ± 12 Ma using chemical Th–U–total Pb dating of the Y-depleted monazite core. Second episode highlighted by growth of secondary white mica resulted from subsequent overprint in amphibolite and greenschist facies. Fluid assisted growth of the Y-enriched monazite rim at 419 ± 8 Ma marks the timing of the nappe emplacement. Age of migmatization and thrusting in the Kåfjord Nappe is similar to the Kalak Nappe Complex, and other units of the Middle Allochthon to the south. Nevertheless, the obtained results do not allow for unambiguous definition of the tectonostratigraphic position of the Skibotn Nappe Complex.


Author(s):  
N. Hicks ◽  
D.J.C. Gold ◽  
M. Ncume ◽  
L. Hoyer

Abstract During the early 20th century the term Insuzi Series, later reclassified as the Nsuze Group of the Pongola Supergroup, was proposed for a volcano-sedimentary succession exposed in the upper Nsuze River valley in central KwaZulu-Natal, South Africa. Subsequently, however, there has been little consensus on lithostratigraphic frameworks within the type area, and limited correlation with the exceptionally well-defined stratigraphy within the main Pongola basin. Recent mapping, combined with newly acquired high-resolution aeromagnetic data, satellite imagery, and available published geochronological data suggest that previously published schemes within the Nkandla sub-basin require revision. Utilising important regional marker units, as well as the stratigraphic positions of distinct sedimentary facies within the otherwise volcanic Nsuze Group, a working model is proposed. Lithostratigraphic units are well represented in the Mhlatuze and Nkandla inliers with examples from these areas given prominence. Where exposed, potential correlates within the Nsuze nappe complex are discussed. Within the proposed scheme the siliciclastic Mantonga Formation forms the base of the Nsuze Group, nonconformably overlying basement granitoids of the Kaapvaal Craton within the Mhaltuze Inlier. Mafic volcanics of the Nhlebela Formation overlie the Mantonga Formation in the inlier. These two lower units are, however, not exposed elsewhere in the sub-basin. The sedimentary White Mfolozi Formation forms the base of the succession in the Nkandla Inlier. Diamictites and stromatolite-bearing carbonate lithologies unique to this unit are utilised for regional third-order correlations with the type-area in the White Mfolozi Inlier. Mafic volcanics of the Agatha Formation overlie the White Mfolozi Formation in all exposures, but are most extensively developed within the Mdlelanga syncline of the Nkandla Inlier. Sedimentary and volcaniclastic lithologies of the Mkuzane Formation cap the Nsuze Group in the Mhlatuze and Nkandla inliers. Thickness of this formation is, however, highly variable having been subjected to pre-Vutshini Formation erosion. Through detailed reinterpretation of the stratigraphy of the Nkandla sub-basin we present a third order, (formation) scale, lithostratigraphic scheme encompassing all the formational units of the currently accepted stratigraphy within the main Pongola basin. This working model has the potential for lower-ranking units to be identified and be placed at their appropriate stratigraphic levels in future.


1992 ◽  
Vol 29 (11) ◽  
pp. 2429-2444 ◽  
Author(s):  
Keith Benn ◽  
Edward W. Sawyer ◽  
Jean-Luc Bouchez

The late Archean Opatica granitoid-gneiss belt is situated within the northern Abitibi Subprovince, along the northern margin of the Abitibi greenstone belt. Approximately 200 km of structural section was mapped along three traverses within the previously unstudied Opatica belt. The earliest preserved structures are penetrative foliations and stretching and mineral lineations recording regional ductile shearing (D1). Late-D1 deformation was concentrated into kilometre-scale ductile fault zones, typically with L > S tectonite fabrics. Two families of lineations are associated with D1, indicating shearing both parallel and transverse to the east-northeast trend of the belt. Lineations trending east-northeast or northwest–southeast tend to be dominant within domains separated by major fault zones. In light of the abundant evidence for early north–south compression documented throughout southern Superior Province, including the Abitibi greenstone belt, D1 is interpreted in terms of mid-crustal thrusting, probably resulting in considerable crustal thickening. Movement-sense indicators suggest that thrusting was dominantly southward vergent. D2 deformation resulted in the development of vertical, regional-scale dextral and sinistral transcurrent fault zones and open to tight upright horizontal folds of D1 fabrics. In the context of late Archean orogenesis in southern Superior Province, the tectonic histories of the Abitibi and Opatica belts should not be considered separately. The Opatica belt may correlate with the present-day mid-crustal levels of the Abitibi greenstone belt, and to crystalline complexes within the Abitibi belt. It is suggested that the Abitibi Subprovince should be viewed, at the regional scale, as a dominantly southward-vergent orogenic belt. This work demonstrates that structural study of granitoid-gneiss belts adjacent to greenstone belts can shed considerable light on the regional structure and structural evolution of late Archean terranes.


1987 ◽  
Vol 124 (5) ◽  
pp. 451-466 ◽  
Author(s):  
A. P. Boyle

AbstractThe relationship between disposition of metamorphic isograds and early strain history is examined for the Sulitjelma Fold Nappe of the central Scandes. Evidence for stratigraphic inversion and the widespread inversion of the garnet isograd is reviewed, and new evidence for the nature of early Scandian deformation is presented. A two-stage model is presented which explains the inversions by (i) an initial phase of horizontal compression resulting in crustal thickening by vertical stretching during closure of a marginal basin, followed by (ii) continued horizontal compression and crustal thickening by eastward-directed nappe emplacement. The emplacement of the Sulitjelma Fold Nappe during the latter phase of progressive simple-shear-dominated deformation was accompanied by the development of sheath fold geometries and the overturning of isotherms to produce the widespread inversion of the garnet isograd.


2016 ◽  
Vol 154 (3) ◽  
pp. 491-515 ◽  
Author(s):  
A. K. ENGVIK ◽  
B. BINGEN

AbstractGranulite-facies metamorphism recorded in NE Mozambique is attributed to three main tectonothermal events, covering more than 1400 Ma from Palaeoproterozoic – early Palaeozoic time. (1) Usagaran–Ubendian high-grade metamorphism of Palaeoproterozoic age is documented in the Ponta Messuli Complex by Grt-Sil-Crd-bearing metapelites, estimated to pressure (P) 0.75 ± 0.08 GPa and temperature (T) 765 ± 96°C. The post-peak P-T path is characterized by decompression followed by near-isobaric cooling. (2) Irumidian medium- to high-pressure granulite-facies metamorphism is evident in the Unango and Marrupa complexes of late Mesoproterozoic – early Neoproterozoic age. High-pressure granulite-facies is documented by Grt-Cpx-Pl-Rt-bearing mafic granulites in the northwestern part of the Unango Complex, with peak conditions up to P = 1.5 GPa and T = 850°C. Medium-pressure granulite-facies conditions recording P of c. 1.15 GPa and T of 875°C are documented by Grt-Opx-Cpx-Pl assemblage in mafic granulites and charnockitic gneisses of the central part of the Unango Complex. (3) Tectonothermal activity during the Ediacaran–Cambrian Kuunga Orogeny is recorded in the Mesoproterozoic gneiss complexes as amphibolite facies to medium-pressure granulite-facies metamorphism. Granulite facies are documented by Grt-Opx-Cpx-Pl-bearing mafic granulites and charnockitic gneisses, reporting P = 0.99 ± 13 GPa at T = 738 ± 84°C in the Unango Complex and P = 0.92 ± 18 GPa at T = 841 ± 135°C in the Marrupa Complex. This metamorphism is attributed to crustal thickening related to overriding of the Cabo Delgado Nappe Complex, and shorthening along the Lurio Belt during the early Palaeozoic Kuunga Orogeny.


Sign in / Sign up

Export Citation Format

Share Document