scholarly journals Th–U–total Pb monazite geochronology records Ordovician (444 Ma) metamorphism/partial melting and Silurian (419 Ma) thrusting in the Kåfjord Nappe, Norwegian Arctic Caledonides

2019 ◽  
Vol 70 (6) ◽  
pp. 494-511 ◽  
Author(s):  
Grzegorz Ziemniak ◽  
Karolina Kośmińska ◽  
Igor Petrík ◽  
Marian Janák ◽  
Katarzyna Walczak ◽  
...  

Abstract The northern extent of the Scandinavian Caledonides includes the Skibotn Nappe Complex of still debated structural position. This paper is focused on part of this complex and presents new U–Th–total Pb monazite dating results for the migmatitic gneiss of the Kåfjord Nappe. The rocks show mineral assemblage of garnet + plagioclase + biotite + white mica + kyanite + rutile ± K-feldspar ± sillimanite. Thermodynamic modelling suggests that garnet was stable at P–T conditions of ca. 680–720 °C and 8–10 kbars in the stability field of kyanite and the rocks underwent partial melting during exhumation following a clockwise P–T path. This episode is dated to 444 ± 12 Ma using chemical Th–U–total Pb dating of the Y-depleted monazite core. Second episode highlighted by growth of secondary white mica resulted from subsequent overprint in amphibolite and greenschist facies. Fluid assisted growth of the Y-enriched monazite rim at 419 ± 8 Ma marks the timing of the nappe emplacement. Age of migmatization and thrusting in the Kåfjord Nappe is similar to the Kalak Nappe Complex, and other units of the Middle Allochthon to the south. Nevertheless, the obtained results do not allow for unambiguous definition of the tectonostratigraphic position of the Skibotn Nappe Complex.

2018 ◽  
Author(s):  
Carly Faber ◽  
Holger Stünitz ◽  
Deta Gasser ◽  
Petr Jeřábek ◽  
Katrin Kraus ◽  
...  

Abstract. This study investigates the Caledonian metamorphic and tectonic evolution in northern Norway, examining the structure and tectonostratigraphy of the Reisa Nappe Complex (RNC; from bottom to top, Vaddas, Kåfjord and Nordmannvik nappes). Structural data, phase equilibrium modelling, and U-Pb zircon and titanite geochronology are used to constrain the timing and P-T conditions of deformation and metamorphism that formed the nappes and facilitated crustal thickening during continental collision. Five samples taken from different parts of the RNC reveal an anticlockwise P-T path attributed to the effects of early Silurian heating followed by thrusting. An early Caledonian S1 foliation in the Nordmannvik Nappe records kyanite-grade partial melting at ~ 760–790 °C and ~ 9.4–11 kbar. Leucosomes formed at 439 ± 2 Ma (U-Pb zircon) in fold axial planes in the Nordmannvik Nappe indicate that compressional deformation initiated while the rocks were still partially molten. This stage was followed by pervasive solid-state shearing as the rocks cooled and solidified, forming the S2 foliation at 680–730 °C and 9.5–10.9 kbar. Multistage titanite growth in the Nordmannvik Nappe records this extended metamorphism between 444 and 427 Ma. In the underlying Kåfjord Nappe, garnet cores record lower P-T (590–610 °C and 5.5–6.8 kbar) but a similar geothermal gradient as the S1 migmatitic event in the Nordmannvik Nappe, indicating formation at a higher relative position in the crust. S2 shearing in the Kåfjord Nappe occurred at 580–605 °C and 9.2–10.1 kbar, indicating a considerable pressure increase during nappe stacking. Gabbro intruded in the Vaddas Nappe at 439 ± 1 Ma, synchronously with migmatization in the Nordmannvik Nappe. In the Vaddas Nappe S2 shearing occurred at 630–640 ºC and 11.7–13 kbar. Titanite growth along the lower RNC boundary records S2-shearing at 432 ± 6 Ma. It emerges that early Silurian heating (~ 440 Ma), probably resulting from large-scale magma underplating, initiated partial melting that weakened the lower crust, which facilitated dismembering of the crust into individual nappe units. This tectonic style contrasts subduction of mechanically strong continental crust to great depths.


Solid Earth ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 117-148 ◽  
Author(s):  
Carly Faber ◽  
Holger Stünitz ◽  
Deta Gasser ◽  
Petr Jeřábek ◽  
Katrin Kraus ◽  
...  

Abstract. This study investigates the tectonostratigraphy and metamorphic and tectonic evolution of the Caledonian Reisa Nappe Complex (RNC; from bottom to top: Vaddas, Kåfjord, and Nordmannvik nappes) in northern Troms, Norway. Structural data, phase equilibrium modelling, and U-Pb zircon and titanite geochronology are used to constrain the timing and pressure–temperature (P–T) conditions of deformation and metamorphism during nappe stacking that facilitated crustal thickening during continental collision. Five samples taken from different parts of the RNC reveal an anticlockwise P–T path attributed to the effects of early Silurian heating (D1) followed by thrusting (D2). At ca. 439 Ma during D1 the Nordmannvik Nappe reached the highest metamorphic conditions at ca. 780 ∘C and ∼9–11 kbar inducing kyanite-grade partial melting. At the same time the Kåfjord Nappe was at higher, colder, levels of the crust ca. 600 ∘C, 6–7 kbar and the Vaddas Nappe was intruded by gabbro at > 650 ∘C and ca. 6–9 kbar. The subsequent D2 shearing occurred at increasing pressure and decreasing temperatures ca. 700 ∘C and 9–11 kbar in the partially molten Nordmannvik Nappe, ca. 600 ∘C and 9–10 kbar in the Kåfjord Nappe, and ca. 640 ∘C and 12–13 kbar in the Vaddas Nappe. Multistage titanite growth in the Nordmannvik Nappe records this evolution through D1 and D2 between ca. 440 and 427 Ma, while titanite growth along the lower RNC boundary records D2 shearing at 432±6 Ma. It emerges that early Silurian heating (ca. 440 Ma) probably resulted from large-scale magma underplating and initiated partial melting that weakened the lower crust, which facilitated dismembering of the crust into individual thrust slices (nappe units). This tectonic style contrasts with subduction of mechanically strong continental crust to great depths as seen in, for example, the Western Gneiss Region further south.


2021 ◽  
Author(s):  
Riccardo Callegari ◽  
Katarzyna Walczak ◽  
Grzegorz Ziemniak ◽  
Christopher Barnes ◽  
Jaroslaw Majka

<p>Here, we present preliminary petrochronological results of paragneisses and schists containing bodies of metamafic rocks belonging the Upper Gneiss unit that occurs within the Seve Nappe Complex (SNC) in the Váivančohkka-Salmmečohkat area, north of the lake Torneträsk in northern Sweden and Norway.</p><p>At the outcrop scale, the paragneiss is pervasively foliated and bears features of migmatization. It hosts garnet amphibolite bodies that are locally transected by leucocratic veins. Thin section observations of the paragneiss reveal a mineral assemblage composed of Q+Grt+Amp+Bi±Pl±Ms±Sil±Ru. The leucocratic vein contains Q+Pl+Ms+Bi+Grt+Kfs±Sil. Importantly, some of the studied gneisses contain quartz, exhibiting lobate boundaries, as well as garnet surrounded by melt rim. The presence of quartz forming pseudomorphs after melt was also identified and observed to host both monophase and fluid inclusions. All of these microtextures are indicative of partial melting.</p><p>Preliminary pressure-temperature estimates derived using conventional geothermobarometry and phase equilibrium modelling corroborated petrographic observations. The peak metamorphic conditions were estimated to 8–10kbar and 800–850°C, i.e., in the stability field of melt.</p><p>Uranium-Pb zircon and Th-U-total Pb monazite dating of the migmatitic paragneiss yielded consistent age estimates of 602±5Ma and 599±3Ma, respectively. Nearly the same U-Pb age of 604±7Ma was obtained for the zircon from the leucocratic vein transecting the amphibolite within the studied gneiss. Interestingly, no Caledonian zircon nor monazite were identified. Considering the textural position of the dated zircon and monazite, as well as their chemical character, we suggest that these minerals date the partial melting event recorded by the rocks.</p><p>Regionally, we interpret that the Upper Gneiss unit of SNC in the Váivančohkka-Salmmečohkat area could be a northern continuation of the Leavasvággi gneiss associated with the Vassačoru Igneous Complex of SNC in the Kebnekaise region. Notably, the latter reveals evidence of high temperature metamorphism at c. 600Ma (Paulsson and Andréasson 2002) and its mafic component (see also Rousku et al. in this session) could be an equivalent to the metamafic rocks enclosed within the Upper Gneiss unit. The Leavasvággi gneiss and the Upper Gneiss unit together with similar rocks farther north in Indre Troms and in Corrovare which also yield a c. 610-600Ma age of high grade overprint (Gee et al. 2016; Kjøll et al. 2019). Altogether, these areas with only localized Caledonian influence diverge from traditional models developed for the SNC farther south and offer an additional insight into the development of the late Neoproterozoic margin of Baltica at the early stages of Iapetus opening.</p><p>This study was supported by the National Science Centre (Poland) grant no. 2019/33/B/ST10/01728 to J. Majka.</p><p>References</p><p>Gee et al. 2016. Baltoscandian margin, Sveconorwegian crust lost by subduction during Caledonian collisional orogeny. GFF 139, 36–51.</p><p>Kjøll et al. 2019. Timing of break-up and thermal evolution of a pre-Caledonian  Neoproterozoic exhumed magma-rich rifted margin. Tectonics 38, 1843-1862.</p><p>Paulsson & Andréasson 2002. Attempted break-up of Rodinia at 850 Ma: geochronological evidence from the Seve–Kalak Superterrane, Scandinavian Caledonides. JGS, 159, 751-761.</p>


2020 ◽  
Author(s):  
Dražen Balen ◽  
Hans-Joachim Massonne

<p>The Mt. Papuk area in Croatia is a natural laboratory for studying magmatic and metamorphic processes on exposed igneous and metamorphic rocks that were created during several major orogenic events – pre-Variscan, Variscan and Alpine. Among them, the Variscan orogeny was recognized as the most widespread and the best documented one already in the last century. In recent years research on pre-Variscan and Alpine events led to detailed information on timing and P-T evolution, whereas the Variscan orogeny in the vast area between Bohemian Massif and Mediterranean terranes was just sporadically investigated. The huge gap in Variscan P-T-t data started to be an obstacle for regional paleogeographic reconstructions that can be overcome by studies of the Mt. Papuk area bearing new key informations.</p><p>To determine the timing of Variscan event(s), dating with the electron microprobe on monazite and xenotime and the LA-ICP-MS on apatite and zircon was conducted. So far, we extracted a set of geochronological data from four selected type-localities (Šandrovac, Jankovac, Čarugin Kamen, Koturić) with medium- to high-grade gneiss including migmatite in the western part of the Mt. Papuk area using monazite. In addition, a metamorphic P-T-t path was constrained.</p><p>The rock specimens show a schistose fabric and a well-preserved mid- to coarse-grained granoblastic texture. Some of them show traces of partial melting. The schistosity is defined by the preferred orientation of elongated feldspar grains, mica (biotite and muscovite)-rich domains and quartz ribbons. K-feldspar and plagioclase are the dominant phases followed by quartz, biotite, white mica and, in some rocks, almandine-rich garnet (65-70% mol.% alm) and staurolite. Zircon, apatite, monazite, rhabdophane, allanite, ilmenite, rutile and titanite are accessory minerals.</p><p>Monazite grains are irregular in shape and locally elongated varying in size from ~15-50 μm. They are irregularly distributed within the matrix assemblage enclosed in micas, feldspar, garnet and quartz. Monazite shows a high Ce<sub>2</sub>O<sub>3</sub> content (around 28 wt. %). La<sub>2</sub>O<sub>3</sub>, Nd<sub>2</sub>O<sub>3</sub> and ThO<sub>2</sub> contents slightly vary around 13 wt. %, 12 wt. %, and 3.4-5.3 wt. %, respectively. In general, the composition of monazite does not differ significantly among localities with the exception of yttrium. The content of Y<sub>2</sub>O<sub>3</sub> is highest (up to 4 wt. %) in monazite from rock samples that show traces of partial melting, revealing a high-T event, and around 2 wt. % in monazite from gneiss.</p><p>The weighted average age of 374.1±5.8 Ma (1σ, 95% confidence level, MSWD=0.68, probability of fit=0.993, n=96) fits well with the measurements for each type-locality: 384.5±9.0 Ma (n=15), 373.3±7.6 Ma (n=28), 379.0±10.0 Ma (n=31) and 364.0±24.0 Ma (n=22), respectively. However, probability density histograms reveal discernable groups at 390, 373 and 330 Ma age maxima and point to more than one event during the metamorphic evolution of the Variscan crust. The derived P-T-t path implies a rapid exhumation from a depth of ca. 30 km with a nearly isothermal hairpin-like (“narrow”) clockwise path reaching max. P-T values of 9-9.5 kbar and 610°C with occurrence of melt during exhumation at ~5 kbar and 640°C.</p>


Moreana ◽  
2003 ◽  
Vol 40 (Number 153- (1-2) ◽  
pp. 219-239
Author(s):  
Anne Lake Prescott

Thomas More is often called a “humanist,” and rightly so if the word has its usual meaning in scholarship on the Renaissance. “Humanist” has by now acquired so many different and contradictory meanings, however, that it needs to be applied carefully to the likes of More. Many postmodernists tend to use the word, pejoratively, to mean someone who believes in an autonomous self, the stability of words, reason, and the possibility of determinable meanings. Without quite arguing that More was a postmodernist avant la lettre, this essay suggests that he was not a “humanist” who stalks the pages of much recent postmodernist theory and that in fact even while remaining a devout Catholic and sensible lawyer he was quite as aware as any recent critic of the slipperiness of human selves and human language. It is time that literary critics tightened up their definition of “humanist,” especially when writing about the Renaissance.


Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


Author(s):  
Josep Miquel Bauça ◽  
Andrea Caballero ◽  
Carolina Gómez ◽  
Débora Martínez-Espartosa ◽  
Isabel García del Pino ◽  
...  

AbstractObjectivesThe stability of the analytes most commonly used in routine clinical practice has been the subject of intensive research, with varying and even conflicting results. Such is the case of alanine aminotransferase (ALT). The purpose of this study was to determine the stability of serum ALT according to different variables.MethodsA multicentric study was conducted in eight laboratories using serum samples with known initial catalytic concentrations of ALT within four different ranges, namely: <50 U/L (<0.83 μkat/L), 50–200 U/L (0.83–3.33 μkat/L), 200–400 U/L (3.33–6.67 μkat/L) and >400 U/L (>6.67 μkat/L). Samples were stored for seven days at two different temperatures using four experimental models and four laboratory analytical platforms. The respective stability equations were calculated by linear regression. A multivariate model was used to assess the influence of different variables.ResultsCatalytic concentrations of ALT decreased gradually over time. Temperature (−4%/day at room temperature vs. −1%/day under refrigeration) and the analytical platform had a significant impact, with Architect (Abbott) showing the greatest instability. Initial catalytic concentrations of ALT only had a slight impact on stability, whereas the experimental model had no impact at all.ConclusionsThe constant decrease in serum ALT is reduced when refrigerated. Scarcely studied variables were found to have a significant impact on ALT stability. This observation, added to a considerable inter-individual variability, makes larger studies necessary for the definition of stability equations.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 434
Author(s):  
Anca Nicoleta Marginean ◽  
Delia Doris Muntean ◽  
George Adrian Muntean ◽  
Adelina Priscu ◽  
Adrian Groza ◽  
...  

It has recently been shown that the interpretation by partial differential equations (PDEs) of a class of convolutional neural networks (CNNs) supports definition of architectures such as parabolic and hyperbolic networks. These networks have provable properties regarding the stability against the perturbations of the input features. Aiming for robustness, we tackle the problem of detecting changes in chest X-ray images that may be suggestive of COVID-19 with parabolic and hyperbolic CNNs and with domain-specific transfer learning. To this end, we compile public data on patients diagnosed with COVID-19, pneumonia, and tuberculosis, along with normal chest X-ray images. The negative impact of the small number of COVID-19 images is reduced by applying transfer learning in several ways. For the parabolic and hyperbolic networks, we pretrain the networks on normal and pneumonia images and further use the obtained weights as the initializers for the networks to discriminate between COVID-19, pneumonia, tuberculosis, and normal aspects. For DenseNets, we apply transfer learning twice. First, the ImageNet pretrained weights are used to train on the CheXpert dataset, which includes 14 common radiological observations (e.g., lung opacity, cardiomegaly, fracture, support devices). Then, the weights are used to initialize the network which detects COVID-19 and the three other classes. The resulting networks are compared in terms of how well they adapt to the small number of COVID-19 images. According to our quantitative and qualitative analysis, the resulting networks are more reliable compared to those obtained by direct training on the targeted dataset.


1994 ◽  
Vol 131 (4) ◽  
pp. 519-537 ◽  
Author(s):  
G. I. Alsop

AbstractThe gross geometries exhibited by crustal-scale fold nappes are considered a consequence of both original stratigraphic relationships associated with sub-basin configuration, coupled with the nature of the structural regime and tectonic processes involved in the generation of the nappe pile. The Neo-Proterozoic Dalradian metasediments of northwestern Ireland provide a well-constrained and correlatable stratigraphy which defines a sequence of sub-reclined, tight-isoclinal Caledonian (c. 460 Ma) fold nappes. Within this fold complex, the dominant structure is the crustal-scale Ballybofey Nappe, which may be traced for 40 km along strike and is responsible for a regional (500 km2) stratigraphie inversion. The gentle, NE-plunging attitude of this fold results in a complete spectrum of tectonic levels and deformation gradients being exposed. Relatively low strains in the upper fold limb gradually increase down through the nappe, resulting in the generation of composite foliations and lineations and the development of a 10 km thick shear zone which culminates in a high strain basal detachment with underlying pre-Caledonian basement. The Ballybofey Nappe nucleated and propagated along a major zone of lateral sedimentary facies variation, coincident with the margin of a major Dalradian sub-basin. The large amplitude of the nappe is strongly influenced by the lateral heterogeneity within the metasedimentary sequence, and is associated with a minimum of 25–30 km ESE-directed translation concentrated within the overturned limb. Additional significant displacement is also focused along the basal décollement. Generation of the nappe complex resulted in significant crustal thickening and amphibolite facies metamorphism consistent with 15–18 km of burial, induced by a sequence of nappes propagating in the direction of overshear. The ESE-directed translation of the major fold nappes is away from the Caledonian foreland and a gravity-driven mechanism of nappe emplacement is suggested. Rigorous structural analysis within the cohesive stratigraphie framework enables relationships between the tectonic evolution and stratigraphic patterns to be distinguished, thus allowing models of fold nappe generation and mid-crustal deformation to be evaluated.


Sign in / Sign up

Export Citation Format

Share Document