Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon

1982 ◽  
Vol 119 (4) ◽  
pp. 371-382 ◽  
Author(s):  
H. K. Holdaway ◽  
C. J. Clayton

SummaryFrom a study of silicified fossils, and in particular the microstructure of brachiopods, from the Wilmington Sands (Upper Cretaceous) of Devon, a model of skeletal silicification is proposed. Three distinct morphologies of silica were formed, controlled by the relative rates of silica supply and carbonate dissolution: (a) a fine-scale replacement of the original shell microstructure where silica was abundant; (b) a concentric ring morphology called ‘beekite’ where silica supply was limited, and (c) a granular white crust formed where carbonate dissolution was restricted. Silicification occurred during early diagenesis as a result of bacterial decay of organic matter intimately associated with skeletal fragments, within a sediment of restricted permeability. A build-up of CO2 probably caused dissolution of skeletal carbonate, and bicarbonate released from this caused local precipitation of silica. The proposed mechanism is belived to be of general applicability to micrite-rich carbonate sediments.

2021 ◽  
pp. 105246
Author(s):  
Wiesława Radmacher ◽  
Osmín J. Vásquez ◽  
Mario Tzalam ◽  
Mireya Jolomná ◽  
Anny Molineros ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hidekazu Yoshida ◽  
Ryusei Kuma ◽  
Hitoshi Hasegawa ◽  
Nagayoshi Katsuta ◽  
Sin-iti Sirono ◽  
...  

AbstractIsolated silica concretions in calcareous sediments have unique shapes and distinct sharp boundaries and are considered to form by diagenesis of biogenic siliceous grains. However, the details and rates of syngenetic formation of these spherical concretions are still not fully clear. Here we present a model for concretion growth by diffusion, with chemical buffering involving decomposition of organic matter leading to a pH change in the pore-water and preservation of residual bitumen cores in the concretions. The model is compatible with some pervasive silica precipitation. Based on the observed elemental distributions, C, N, S, bulk carbon isotope and carbon preference index (CPI) measurements of the silica-enriched concretions, bitumen cores and surrounding calcareous rocks, the rate of diffusive concretion growth during early diagenesis is shown using a diffusion-growth diagram. This approach reveals that ellipsoidal SiO2 concretions with a diameter of a few cm formed rapidly and the precipitated silica preserved the bitumen cores. Our work provides a generalized chemical buffering model involving organic matter that can explain the rapid syngenetic growth of other types of silica accumulation in calcareous sediments.


We present an overview of geochemical data from pore waters and solid phases that clarify earliest diagenetic processes affecting modern, shallow marine carbonate sediments. Acids produced by organic matter decomposition react rapidly with metastable carbonate minerals in pore waters to produce extensive syndepositional dissolution and recrystallization. Stoichiometric relations among pore water solutes suggest that dissolution is related to oxidation of H 2 S which can accumulate in these low-Fe sediments. Sulphide oxidation likely occurs by enhanced diffusion of O 2 mediated by sulphide-oxidizing bacteria which colonize oxic/anoxic interfaces invaginating these intensely bioturbated sediments. Buffering of pore water stable isotopic compositions towards values of bulk sediment and rapid 45 Ca exchange rates during sediment incubations demonstrate that carbonate recrystallization is a significant process. Comparison of average biogenic carbonate production rates with estimated rates of dissolution and recrystallization suggests that over half the gross production is dissolved and/or recrystallized. Thus isotopic and elemental composition of carbonate minerals can experience significant alteration during earliest burial driven by chemical exchange among carbonate minerals and decomposing organic matter. Temporal shifts in palaeo-ocean carbon isotope composition inferred from bulk-rocks may be seriously compromised by facies-dependent differences in dissolution and recrystallization rates.


2021 ◽  
Author(s):  
Shane Stoner ◽  
Carlos Sierra ◽  
Marion Schrumpf ◽  
Sebastian Dötterl ◽  
Susan Trumbore

<p>Soil organic matter (SOM) is a complex collection of organic molecules of varying origin, structure, chemical activity, and mineral association. A wide array of laboratory methods exists to separate SOM based on qualitative, biological, chemical, and physical characteristics. However, all present conceptual and logistical limitations, including the requirement of a substantial amount soil material.</p><p>An newly applied alternative method of fractionation relies on a conceptual analogue between biochemical stability in soil and thermal stability, e.g. more persistent SOM will require higher temperatures (greater energy inputs) to decompose than less persistent SOM. This accounts for both chemical complexity and mineral association as main factors in determining SOM persistence.</p><p>In this method, carbon is released by heating SOM to 900°C at a constant rate. The peaks of carbon release are grouped into activation energy pools, CO<sub>2 </sub>is collected, and analyzed for <sup>13</sup>C and <sup>14</sup>C. We seek to describe in finer detail the distribution of soil radiocarbon by adding another fractionation step following a different paradigm of SOM stability, and explore mineralogical effects on SOM quality and stability using thermal analysis, radiocarbon, and gas chromatography.</p><p>Here, we analyzed bulk soil and soil fractions derived from density separation and chemical oxidation, as well as mineral horizons dominated by diverse mineralogies. Density fractions contained a wide range of radiocarbon activities and that young SOM is stabilized across multiple fractions, likely due to organomineral complexation. Initial results showed that soil minerals with limited stabilization potential released C at lower temperatures than those with diverse stabilization mechanisms. High-temperature sub-fractions contained the oldest carbon across fractions and minerals, thus supporting the assumption that thermal stability can be used as a limited analogue for stability in soil. We present a fine-scale distribution of radiocarbon in SOM and discuss the potential of this method for comparison with other fractionation techniques.</p>


Sign in / Sign up

Export Citation Format

Share Document