The Yorkshire Dogger: III. Upper Eskdale

1943 ◽  
Vol 80 (6) ◽  
pp. 209-230 ◽  
Author(s):  
R. H. Rastall ◽  
J. E. Hemingway

1. A sequence of strata is determined in the Dogger of Upper Eskdale and its tributary valleys. The rocks fall into three main series, which are subdivided into groups.2. The underlying Yeovilian sediments, originally included with the Dogger, are mapped and briefly described. The unconformity between them and the Dogger is emphasized.3. The Dogger is marine throughout but only the oldest yields an adequate faunal assemblage, similar to that of the Glaisdale Oolite Series (upper opalinum). The greater part of the Dogger of this area is therefore younger than that of the Yorkshire Coast.4. Chemical changes in the sea-water caused the deposition of siderite to characterize the earliest phase (Glaisdale Oolite Series). This was succeeded by a phase of dominantly chamosite deposition (the Chamositic Series) followed by a reversion to siderite deposition (the Ajalon Series).5. Earth-movement controlled sedimentation over the area. During the first phase an eastern tilt to the region held the centre and west above or near sea-level, where it received no sediment. The second phase saw general depression with the accumulation of shallow water sediments. This was followed by uplift and erosion when a broad shallow valley was cut. Partial depression then flooded the valley with derived marine sediments.

2019 ◽  
Author(s):  
james croll

Evidence of kilometre scale uplift and subsidence at locations remote from any recognised plate boundaries, the existence of mega-sequences of post-rift marine sediments over widespread intra-cratonic areas, and the consideration that pulses of deposition display a clear periodicity and synchronicity over widely dispersed spatial domains, remain largely unresolved issues within current geological theory. While the exact timing of uplift and erosion associated with major unconformities are difficult to assess, the age of sediments immediately above provide vital temporal markers for the onset of subsidence and associated sea level rise. By reconsidering the much studied sedimentary sequences of the Grand and Bryce Canyon areas the following will show that the at least over the Phanerozoic eon the initiation of new pulses of deposition occur at times when earth climate is emerging from ice-house to hot-house conditions. Furthermore, the recorded periods in which global occurrences of epeirogeny have occurred will be shown to correlate closely with the end of hot-house periods and the onset of ice-house global climate conditions. Finally, some tentative thermo-geodynamic explanations for this apparent causal link between global climate and vertical tectonics will be suggested.


Geophysics ◽  
1956 ◽  
Vol 21 (2) ◽  
pp. 305-319 ◽  
Author(s):  
George Shumway

Sound velocity and attenuation measurements in unconsolidated marine sediments have been made by a resonance method which utilizes a thin‐walled plastic cylinder as a pressure‐release container to hold samples. Velocities were determined from resonant frequencies which lay between 23 and 36 kc/sec for the 2 inch diameter by 4 inch long cylindrical container used. Attenuation was determined from the sharpness of the resonant modes. Relatively undisturbed sediment samples were obtained by diver, in shallow water, using the same plastic containers in which the acoustic measurements are made. Deep sea samples were obtained by cutting sections from cores which were taken in plastic tubes. Velocities for shallow water sediments in the San Diego area ranged from 4,840 ft/sec (0.978 times sea water velocity) for fine silt to 5,680 ft/sec (1.147 times sea water velocity) for medium sand, measured at 60°F. and atmospheric pressure. Velocities in deep‐sea red clay samples ranged between 0.980 and 1.040 times the sea water velocity, at 60°F. and atmospheric pressure. Attenuation coefficients for shallow‐water San Diego sediments varied from about 1 to 4 db/ft for silts, to about 3 to 8 db/ft for sand.


2012 ◽  
Vol 16 (7) ◽  
pp. 1845-1862 ◽  
Author(s):  
F. Jørgensen ◽  
W. Scheer ◽  
S. Thomsen ◽  
T. O. Sonnenborg ◽  
K. Hinsby ◽  
...  

Abstract. Geophysical techniques are increasingly being used as tools for characterising the subsurface, and they are generally required to develop subsurface models that properly delineate the distribution of aquifers and aquitards, salt/freshwater interfaces, and geological structures that affect groundwater flow. In a study area covering 730 km2 across the border between Germany and Denmark, a combination of an airborne electromagnetic survey (performed with the SkyTEM system), a high-resolution seismic survey and borehole logging has been used in an integrated mapping of important geological, physical and chemical features of the subsurface. The spacing between flight lines is 200–250 m which gives a total of about 3200 line km. About 38 km of seismic lines have been collected. Faults bordering a graben structure, buried tunnel valleys, glaciotectonic thrust complexes, marine clay units, and sand aquifers are all examples of geological structures mapped by the geophysical data that control groundwater flow and to some extent hydrochemistry. Additionally, the data provide an excellent picture of the salinity distribution in the area and thus provide important information on the salt/freshwater boundary and the chemical status of groundwater. Although the westernmost part of the study area along the North Sea coast is saturated with saline water and the TEM data therefore are strongly influenced by the increased electrical conductivity there, buried valleys and other geological elements are still revealed. The mapped salinity distribution indicates preferential flow paths through and along specific geological structures within the area. The effects of a future sea level rise on the groundwater system and groundwater chemistry are discussed with special emphasis on the importance of knowing the existence, distribution and geometry of the mapped geological elements, and their control on the groundwater salinity distribution is assessed.


2016 ◽  
Vol 86 (3) ◽  
pp. 359-372 ◽  
Author(s):  
Pierluigi Pieruccini ◽  
Claudio Di Celma ◽  
Federico Di Rita ◽  
Donatella Magri ◽  
Giorgio Carnevale ◽  
...  

AbstractA 25 m-thick outcrop section exposed at Torre Mucchia, on the sea-cliff north of Ortona, eastern central Italy, comprises a rare Middle Pleistocene succession of shallow-water and paralic sediments along the western Adriatic Sea. An integrated study of the section, including facies and microfacies analyses, and characterization of paleobiological associations (mollusks, fishes, ostracods, foraminifers and pollen), enable a detailed reconstruction of the paleoenvironmental and paleoclimatic conditions during deposition. The shallow-water deposits include a transgressive, deepening- and fining-upward shoreface to offshore-transition facies succession overlain by a regressive shoreface-foreshore sandstone body with an erosive base and a rooted and pedogenically altered horizon at the top that imply deposition during sea-level fall. This forced regressive unit is overlain by paralic strata forming a transgressive succession comprising palustrine carbonates and back-barrier lagoonal mudstones. The palustrine carbonates exhibit some of the typical features encountered in palustrine limestones deposited within seasonal freshwater wetlands (marl prairies). Following the sea-level rising trend, the freshwater marshes were abruptly replaced by a barrier-lagoon system that allowed deposition of the overlying mud-rich unit. Within these deposits, the faunal assemblages are consistent with a low-energy brackish environment characterized by a relatively high degree of confinement. The pollen record documents the development of open forest vegetation dominated by Pinus and accompanied by a number of mesophilous and thermophilous tree taxa, whose composition supports a tentative correlation with Marine Oxygen Isotope Stage 17. The new pollen record from Torre Mucchia improves our understanding of the vegetation development in the Italian Peninsula during the Middle Pleistocene and sheds new light on the role played by the most marked glacial periods in determining the history of tree taxa.


2021 ◽  
Vol 8 ◽  
Author(s):  
Vilnis Frishfelds ◽  
Juris Sennikovs ◽  
Uldis Bethers ◽  
Jens Murawski ◽  
Andrejs Timuhins

This study investigates a water transport features by extending Copernicus Marine Environment Service (CMEMS) to the Liepaja coast-port-channel-lake system with a two-way nested model. The Liepaja lake and Liepaja port are connected by Trade channel. The Liepaja port has three gates—the openings in wave breakers connecting the port aquatory with the Baltic sea. Each of gates has a corresponding dredged channel for securing the navigation. A hydrodynamic model is set up to study the flow and water level in this system. The area of the port gates, port and Trade channel are resolved by 33 m grid. The model results are verified against currents and sea level observations inside/outside port, Trade channel and Liepaja lake. Results and observations show that strong currents occur in the Trade channel in case of rapid sea level change in Baltic sea despite the Trade channel is rather shallow at the connection with Liepaja lake. The northern part of the Liepaja lake gets filled with brackish water during storm surge events. The channel has notable alternating current also during a relatively calm weather due to the port seiches. Long and narrow shape of the channel implies the Helmholtz type oscillations between the lake and the port with a period in approximately semidiurnal range. Hydrodynamic simulations describe well these oscillations but the phase of hourly scale oscillations in the port may differ in case of weak external forcing. Water exchange is significantly increased by the transit (gate to gate) sea currents. This transit flow usually occurs between South or Central gate and the North gate carrying sea water into the port. Northward flow of the surface layer is more characteristic in the port aquatory due the prevailing south-western winds. There are intense morphological processes at the coastline and underwater slope near the Liepaja port due to a sandy western coastline of Latvia, long fetch of the waves and strong currents at the port gates. Liepaja port is one of the Latvian ports in HywasPort operational service of hydrodynamics, waves and siltation.


Sign in / Sign up

Export Citation Format

Share Document