scholarly journals Elemental and Sr–Nd–Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: implications for lithospheric mantle evolution

2007 ◽  
Vol 144 (6) ◽  
pp. 937-952 ◽  
Author(s):  
JUN-HONG ZHAO ◽  
RUIZHONG HU ◽  
MEI-FU ZHOU ◽  
SHEN LIU

AbstractCretaceous mafic dykes in Fujian province, SE China provide an opportunity to examine the nature of their mantle source and the secular evolution of the Mesozoic lithospheric mantle beneath SE China. The mafic rocks have SiO2 ranging from 47.42 to 55.40 wt %, Al2O3 from 14.0 wt % to 20.4 wt %, CaO from 4.09 to 11.7 wt % and total alkaline (K2O+Na2O) from 2.15 wt % to 6.59 wt %. Two types are recognized based on their REE and primitive mantle-normalized trace element patterns. Type-A is the dominant Mesozoic mafic rock type in SE China and is characterized by enrichment of light rare earth elements (LREE) ((La/Yb)n = 2.85–19.0) and arc-like trace element geochemistry. Type-P has relatively flat REE patterns ((La/Yb)n = 1.68–3.43) and primitive mantle-like trace element patterns except for enrichment of Rb, Ba and Pb. Type-A samples show EMII signatures on the Sr-Nd isotopic diagram, whereas type-P rocks have high initial 143Nd/144Nd ratios (0.5126–0.5128) relative to the type-A rocks (143Nd/144Nd = 0.5124–0.5127). The type-A rocks have 207Pb/204Pb ranging from 15.47 to 15.67 and 206Pb/204Pb from 18.26 to 18.52. All the type-A rocks show a negative correlation between 143Nd/144Nd and 206Pb/204Pb ratios and a positive relationship between 87Sr/86Sr and 206Pb/204Pb ratios, indicating mixing of a depleted mantle source and an EMII component. Geochemical modelling shows that the parental magmas were formed by 5–15 % partial melting of a spinel lherzolite, and contaminated by less than 1 % melt derived from subducted sediment. The type-P magmas were derived from a mantle source unmodified by subduction components. The wide distribution of type-A dykes in SE China suggests that subduction-modified lithospheric mantle was extensive beneath the Cathaysia Block. Geochemical differences between Mesozoic and Cenozoic mafic rocks indicate that lithospheric thinning beneath SE China occurred in two episodes: firstly by heterogeneous modification by subducted components in early Mesozoic times, and later by chemical–mechanical erosion related to convective upwelling of the asthenosphere during Cenozoic times.

Author(s):  
Yue Qi ◽  
Qiang Wang ◽  
Gang-jian Wei ◽  
Xiu-Zheng Zhang ◽  
Wei Dan ◽  
...  

Diverse rock types and contrasting geochemical compositions of post-collisional mafic rocks across the Tibetan Plateau indicate that the underlying enriched lithospheric mantle is heterogeneous; however, how these enriched mantle sources were formed is still debated. The accreted terranes within the Tibetan Plateau experienced multiple stages of evolution. To track the geochemical characteristics of their associated lithospheric mantle through time, we can use mantle-derived magmas to constrain the mechanism of mantle enrichment. We report zircon U-Pb ages, major and trace element contents, and Sr-Nd isotopic compositions for Early Cretaceous and late Eocene mafic rocks in the southern Qiangtang terrane. The Early Cretaceous Baishagang basalts (107.3 Ma) are characterized by low K2O/Na2O (<1.0) ratios, arc-like trace element patterns, and uniform Sr-Nd isotopic compositions [(87Sr/86Sr)i = 0.7067−0.7073, εNd(t) = −0.4 to −0.2]. We suggest that the Baishagang basalts were derived from partial melting of enriched lithospheric mantle that was metasomatized by subducted Bangong−Nujiang oceanic material. We establish the geochemistry of the pre-collisional enriched lithospheric mantle under the southern Qiangtang terrane by combining our data with those from other Early Cretaceous mafic rocks in the region. The late Eocene (ca. 35 Ma) post-collisional rocks in the southern Qiangtang terrane have low K2O/Na2O (<1.0) ratios, and their major element, trace element, and Sr-Nd isotopic compositions [(87Sr/86Sr)i = 0.7042−0.7072, εNd(t) = −4.5 to +1.5] are similar to those of the Early Cretaceous mafic rocks. Based on the distribution, melting depths, and whole-rock geochemical compositions of the Early Cretaceous and late Eocene mafic rocks, we argue that the primitive late Eocene post-collisional rocks were derived from pre-collisional enriched lithospheric mantle, and the evolved samples were produced by assimilation and fractional crystallization of primary basaltic magma. Asthenosphere upwelling in response to the removal of lithospheric mantle induced the partial melting of enriched lithospheric mantle at ca. 35 Ma.


Author(s):  
Evan Keir-Sage ◽  
Matthew I. Leybourne ◽  
Pedro J. Jugo ◽  
Danie F. Grobler ◽  
Cédric C. Mayer

Abstract The proximity to metasedimentary footwall rocks relative to platinum group element (PGE) mineralized intrusive rocks in the northern limb of the Bushveld Igneous Complex (BIC) has resulted in complex local contamination in the intrusions. To assess the extent of incorporation of non-magmatic material and its effects on PGE mineralization, major element, trace element, and S isotopic data were collected from drill core UMT094 on the Turfspruit farm, where core logging has shown that the mineralized Platreef, forming the Flatreef deposit, is located stratigraphically well above local sedimentary footwall rocks. The S isotopic data combined with whole rock geochemistry data (including CaO/Al2O3, (V/Ti)PM, (Ni/Cr)PM, S/Se, loss on ignition) were used to assess incorporation of a range of local footwall material. The δ34S data show a steady decrease from the footwall assimilation zone (δ34S typically + 8 to + 9‰, maximum 12‰) to near constant δ34S values (δ34S < + 4‰) below the main PGE reef. Similar values have been documented for the Merensky Reef in the eastern and western limbs of the BIC (δ34S ~ 0 to + 3.5‰). Other geochemical parameters, such as S/Se and CaO/Al2O3, also match the ranges documented for the Merensky Reef elsewhere in the BIC. In addition, parameters such as whole rock V/Ti, normalized to primitive mantle (V/Ti)PM, are shown to be useful indicators of contamination and the type of contaminant with 1 < (V/Ti)PM < 2 for uncontaminated magmatic units; [V/Ti]pm > 2 for shale assimilation; and [V/Ti]pm < 1 for carbonate assimilation. The results suggest that the main PGE mineralization in the Flatreef deposit formed without significant in situ contamination and that the primary mechanism of PGE mineralization in the Platreef at Turfspruit was no different than the mechanism that generated the Merensky Reef in the eastern and western limbs of the BIC.


2004 ◽  
Vol 141 (1) ◽  
pp. 81-98 ◽  
Author(s):  
PINAR ALICI ŞEN ◽  
ABİDİN TEMEL ◽  
ALAIN GOURGAUD

Extensive continental collision-related volcanism occurred in Turkey during Neogene–Quaternary times. In central Anatolia, calc-alkaline to alkaline volcanism began in the Middle–Late Miocene. Here we report trace elemental and isotopic data from Quaternary age samples from central and eastern Anatolia. Most mafic lavas from central Anatolia are basalt and basaltic andesite, with lesser amounts of basaltic trachyandesite and andesite. All magma types exhibit enrichment in LILE (Sr, Rb, Ba and Pb) relative to HFSE (Nb, Ta). Trace element patterns are characteristic of continental margin volcanism with high Ba/Nb and Th/Nb ratios. 87Sr/86Sr and 143Nd/144Nd isotopic ratios of central Anatolian lavas range between 0.704105–0.705619 and 0.512604–0.512849, respectively. The Quaternary alkaline volcanism of eastern Anatolia has been closely linked to the collision between the Arabian and Eurasian plates. Karacadaǧ and Tendürek volcanic rocks are represented by alkali basalts and basaltic trachyandesites, respectively. As expected from their alkaline nature, they contain high abundances of LIL elements, but Tendürek lavas also show depletion in Nb and Ta, indicating the role of crustal contamination in the evolution of these magmas. 87Sr/86Sr and 143Nd/144Nd ratios of the Karacadaǧ and Tendürek lavas range from 0.703512 to 0.704466; 0.512742 to 0.512883 and 0.705743 to 0.705889 and 0.512676, respectively. Petrogenetic modelling has been used to constrain source characteristics for the central and eastern Anatolian volcanic rocks. Trace element ratio plots and REE modelling indicate that the central Anatolian volcanism was generated from a lithospheric mantle source that recorded the previous subduction events between Afro-Arabian and Eurasian plates during Eocene to Miocene times. In contrast, The Karacadaǧ alkaline basaltic volcanism on the Arabian foreland is derived from an OIB-like mantle source with limited crustal contamination. Tendürek volcanism, located on thickened crust, north of the Bitlis thrust zone, derived from the lithospheric mantle via small degrees (1.5 %) of partial melting.


2016 ◽  
Vol 7 (6) ◽  
pp. 911-926 ◽  
Author(s):  
Y.A. Cook ◽  
I.V. Sanislav ◽  
J. Hammerli ◽  
T.G. Blenkinsop ◽  
P.H.G.M. Dirks

2021 ◽  
Author(s):  
Igor Ashchepkov ◽  
Alla Logvinova ◽  
Zdislav Spetsius ◽  
Theodoros Ntaflos ◽  
Hilary Downes ◽  
...  

&lt;p&gt;The PT conditions and position of different groups of eclogites in the subcratonic lithospheric mantle (SCLM) worldwide has been established using clinopyroxene Jd-Di thermobarometry for different cratons and kimberlite localities. Beneath Siberia, Fe-eclogites found within the 3.0-4.0 GPa &amp;#160;and&amp;#160; were probably formed in Early Archean times forming the base of the lithosphere. In the Middle and Late Archean, eclogites were melted during subduction creating restite and cumulates from partial melts traced ascending channels.&lt;/p&gt;&lt;p&gt;High-Mg eclogites (partial melts or arc cumulates) are related to low-T geotherms. Melt-metasomatized eclogites trace a high-T geotherm and are often close to the middle part of the mantle lithosphere. Abundant eclogitic diamond inclusions from Siberia also mostly belong to the middle part of the lithosphere.&amp;#160;&lt;/p&gt;&lt;p&gt;Ca-rich eclogites from Precambrian kimberlites of India are located in the middle lithospheric mantle whereas those entrained in Phanerozoic magmas are derived from the lithosphere base. In the Wyoming craton, kimberlites carry eclogite xenoliths captured from the 4.0-2.5 GPa interval. &amp;#160;In mantle lithosphere sampled by Proterozoic kimberlites, Ca-rich eclogites and grospydites occur in the 4.0-5.0 GPa interval. South Africa HT eclogite and diamond inclusions from the Proterozoic Premier kimberlites are derived from the deeper part of the mantle lithosphere and trace a high-T geotherm at depths of 7.0-4.0 GPa showing an increase in Fe upwards in the mantle section. Similar trends are common beneath the Catoca cluster kimberlites in Angola.&lt;/p&gt;&lt;p&gt;Mantle eclogites have clinopyroxenes and garnet trace element patterns with opposite inclinations determined by KDs with melts. Flatter and bell-like REE patterns with Eu anomalies? HFSE troughs and U, Pb peaks are common for MORB-type basaltic eclogites. High-Mg eclogites show less fractionated incompatible element patterns.&amp;#160; LILE-enrichments and HFSE troughs are typical for kyanite-bearing eclogites. Clinopyroxenes from diamond-bearing eclogites show lower REE and troughs in Nb and Zr, peaks in Pb and U concentrations compared to barren eclogites with round smooth trace element patterns and small depressions in Pb and Ba.&lt;/p&gt;&lt;p&gt;Support: RFBR 19-05-00788,&amp;#160; Russian Ministry of Education and Science&lt;/p&gt;&lt;p&gt;&lt;img src=&quot;https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.2c9ebbff3c0067455141161/sdaolpUECMynit/12UGE&amp;app=m&amp;a=0&amp;c=4b235af5b7a8029fc48da92cba3afd9d&amp;ct=x&amp;pn=gnp.elif&amp;d=1&quot; alt=&quot;&quot;&gt;&lt;/p&gt;&lt;p&gt;&lt;img src=&quot;https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.d13207104c0065755141161/sdaolpUECMynit/12UGE&amp;app=m&amp;a=0&amp;c=d8f9503af82277872a4263e84ff9e0cf&amp;ct=x&amp;pn=gnp.elif&amp;d=1&quot; alt=&quot;&quot;&gt;&lt;/p&gt;&lt;p&gt;&lt;img src=&quot;https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.6b7fb9204c0063955141161/sdaolpUECMynit/12UGE&amp;app=m&amp;a=0&amp;c=6b87575d150326ed00a773ccd740ef07&amp;ct=x&amp;pn=gnp.elif&amp;d=1&quot; alt=&quot;&quot;&gt;&lt;/p&gt;&lt;p&gt;&lt;img src=&quot;https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.d6683a304c0060165141161/sdaolpUECMynit/12UGE&amp;app=m&amp;a=0&amp;c=d034421517782917a447efa1c07c6281&amp;ct=x&amp;pn=gnp.elif&amp;d=1&quot; alt=&quot;&quot;&gt;&lt;/p&gt;&lt;p&gt;&lt;img src=&quot;https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.336759404c0065265141161/sdaolpUECMynit/12UGE&amp;app=m&amp;a=0&amp;c=b4a9255ae696984c788c9868caf7be97&amp;ct=x&amp;pn=gnp.elif&amp;d=1&quot; alt=&quot;&quot;&gt;&lt;/p&gt;


1975 ◽  
Vol 112 (2) ◽  
pp. 175-181 ◽  
Author(s):  
J. A. Winchester

SummaryIn the Moinian rocks of Scotland, epidote-bearing calc-silicates, distinct from the commoner garnet-zoisite-bearing calc-silicates, occur at several widely scattered locations. The major element geochemistry of the two types of calc-silicate is very similar, and their somewhat different petrology and trace element geochemistry may be explained by the preservation of grains of detrital epidote and heavy minerals in the epidotic calc-silicates. These grains were concentrated in the original sediment and remained stable under greenschist and epidote-amphibolite metamorphic facies conditions. While the garnet-zoisite bearing calc-silicates may be derived from calcareous marls, the epidotic calc-silicate bands are probably derived from epidotic grits similar to those recorded in the Torridonian.


Sign in / Sign up

Export Citation Format

Share Document