Late Permian to Triassic isotope composition of sulfates in the Eastern Alps: palaeogeographic implications

2016 ◽  
Vol 155 (4) ◽  
pp. 797-810 ◽  
Author(s):  
ANA-VOICA BOJAR ◽  
STANISLAW HAŁAS ◽  
HANS-PETER BOJAR ◽  
ANDRZEJ TREMBACZOWSKI

AbstractLate Permian to Triassic phases from the evaporite deposits of the Northern Calcareous Alps (NCA) and Central Alpine Mesozoic (CAM) were analysed for sulfur and oxygen isotope compositions. For the Upper Permian, most of the δ34S values are in the 11 to 12‰ range. Röt-type sulfates of Early Triassic age are characterized by a heavy sulfur isotopic composition of c. 26‰. The spatial compilation of the available data concerning the isotopic composition of Röt-type sulfates demonstrates that these evaporites are distributed over the entire area of the NCA. Their occurrences are associated with Early Triassic high-temperature conditions of the seawater and a widespread anoxia. The development of sulfates of Carnian–Norian age situated in the CAM is more modest; sulfates are characterized by a δ34S value of c. 15‰. The δ18O values show a broader distribution from 9 to 22‰, related to several factors such as type of deposit, recrystallization processes and bacterial sulfate reduction. The sulfate–sulfide thermometer applied to samples from NCA deposits indicates a thermal overprint of between 215 and 315°C. Microbeam measurements support zonation of minor elements in sphalerite. Sphalerite microstructure indicates thermal overprinting, with no microbial structure being preserved.

2019 ◽  
Vol 190 ◽  
pp. 11 ◽  
Author(s):  
Ana-Voica Bojar ◽  
Stanislaw Hałas ◽  
Hans-Peter Bojar ◽  
Andrzej Trembaczowski

Isotopic compositions of water of crystallization and sulfate anionic group in gypsum and polyhalite were used as tracers for events related to their formation and subsequent evolution, as for example origin of crystallization water and extent of thermal overprint. For this purpose, gypsum and polyhalite from the Permo-Triassic evaporites of the Eastern Alps, were analysed for isotope composition of sulfate anionic group (δ34S and δ18OSO4) and water of crystallization (δD and δ18O). For comparison, water of crystallisation of polyhalite samples of similar age from New Mexico (USA), Kłodawa (Poland) and Hattberg, Hesse (Germany) were also investigated. Estimated δ18O and δD values of polyhalite formation brines vary from 14.4 to 3.4‰ and 42.5 to −6.1‰, respectively. Gypsum formation brines show different δ18O and δD values, from −5.7 to −15‰ and −30.9 to −88.8‰, respectively. The measured δ18OSO4 values of sulfate group are compatible with a thermal overprint at 100°–200°C for both minerals. The thermal overprint documented for the Eastern Alps led to gypsum but not to polyhalite dehydration. The isotopic composition of water of crystallization suggests that polyhalite is preserving the isotopic signature of an enriched brine. During a subsequent event, anhydrite rehydrated to gypsum, with the isotopic composition of water of crystallisation indicating lower (δD and δ18O) values than the present-day meteoric water ones. Due to their distinct mineral structure and, as a result, different temperature of dehydratation, gypsum and polyhalite record different histories following precipitation in an evaporative system.


2019 ◽  
Vol 2 (4) ◽  
pp. 167-175
Author(s):  
Tai Minh Nguyen ◽  
Hoa Xuan Tran ◽  
Giang Thi Truong Nguyen ◽  
Cuong Chi Truong ◽  
Minh Pham

The granite of the Song Ma block mainly consists of two types of granite: biotite granite and hornblende-biotite granite. Biotite granites have the percent of plagioclase (35– 45%), K-feldspar (25–35%), quartz (~20%) and biotite (~10%). Biotite-hornblende granite with the content of plagioclase (40–50%), Kfeldspar (10–15%), hornblende (5–10%) and biotite (5%). Zircon crystals were selected from the granite of Song Ma block are V0741, V0856 and V1006 samples with the LA-ICPMS U-Pb analyses gave concordant ages concentrated at 257±4Ma, 262±3Ma and 241±6Ma (weighted mean). Those ages are older than the results of the previous research. The mineral assemblages and geochemical characteristics show the typical of I-type granites. The results of Hf isotope composition analysis give the value of εHf(t) from +7.3 to +13.9, which is proven the sources of the granite Song Ma block similar to the granite of Phan Si Pan zone, NW Viet Nam during the period from late Permian to early Triassic.


2012 ◽  
Vol 31 (1) ◽  
pp. 73-87 ◽  
Author(s):  
Wolfgang Mette ◽  
Parvaneh Roozbahani

Abstract. Ostracod assemblages of the Upper Permian Bellerophon Formation at Seis near Bozen (South Tyrol, Italy) have been studied with respect to their taxonomy and palaeoecology. The investigations were concentrated on the Late Changsingian Casera Razzo Member which yielded five ostracod assemblages including more than twenty-four species. Twelve of these species are described herein and four species are new, including two species with strong affinity to taxa appearing in the Early Triassic. The lithofacies characteristics and low species diversity are suggestive of a protected shallow lagoonal environment with salinity fluctuations due to freshwater influx. Only four species are recorded from Late Permian localities outside of the Dolomites. This is due to the restricted environmental conditions which inhibited the immigration of more taxa from open shelf environments.


2019 ◽  
Vol 484 (2) ◽  
pp. 187-190
Author(s):  
Y. D. Zakharov ◽  
A. S. Biakov ◽  
M. Horacek ◽  
N. A. Goryachev ◽  
I. L. Vedernikov

It is proposed that oscillating temperature conditions in the late Wuchiapingian and early Changhsingian (Late Permian) followed in the Boreal Superrealm to less variable climatic conditions in the late Changhsingian and early Induan (the time of trap formation of the Siberian Platform), with stable trend of increasing temperature in the Early Triassic. The Problem of the absence of signs of mass extinction of marine organisms at the Permian-Triassic boundary in the Boreal Superrealm is discussed.


Lithosphere ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 683-696 ◽  
Author(s):  
Gui-chun Wu ◽  
Zhan-sheng Ji ◽  
Wei-hua Liao ◽  
Jian-xin Yao

Abstract Triassic deposits in the Bangong-Nujiang Suture Zone are important for understanding its tectonic nature and evolutionary history, but have not been systematically studied due to a lack of biostratigraphic data. For a long time, the Upper Triassic Quehala Group featuring clasolite has been regarded as the only rocky unit. In recent years, the silicite-dominated Gajia Formation that bears radiolarian fossils was suggested to represent Ladinian to Carnian deposits. The Upper Permian and Lower Triassic rocks have never been excavated and thus are considered to be absent. This research, however, reveals that fossils aged from the Late Permian to Anisian of the Middle Triassic and Norian of the Late Triassic have been preserved in the central Bangong-Nujiang Suture Zone, which provides evidence of Upper Permian to early Middle Triassic deposits and provides new insights on the Upper Triassic strata as well. A new Triassic strata succession is thus proposed for the Bangong-Nujiang Suture Zone, and it demonstrates great similarities with those from Lhasa to the south and Qiangtang to the north. Therefore, we deduce that the Bangong-Nujiang Suture Zone was under a similar depositional setting as its two adjacent terranes, and it was likely a carbonate platform background because limestones were predominant across the Triassic. The newly acquired biostratigraphic data indicate that Lhasa and Qiangtang could not have been located on two separate continents with disparate sedimentary settings; therefore, the Bangong-Nujiang Suture Zone likely did not represent a large ocean between them. This conclusion is supported by lithostratigraphic and paleomagnetic research, which revealed that Lhasa and Qiangtang were positioned at low to middle latitudes during the Early Triassic. Combining this conclusion with fossil evidence, we suggest that the three main Tibetan terranes were in the same palaeobiogeographic division with South China, at least during the Latest Permian to Early Triassic. The Early Triassic conodont species Pachycladina obliqua is probably a fossil sign of middle to low latitudes in palaeogeography.


Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.


2016 ◽  
Author(s):  
M. Robinson Cecil ◽  
◽  
Mary Ann Ferrer ◽  
Nancy R. Riggs ◽  
Kathleen M. Marsaglia

Sign in / Sign up

Export Citation Format

Share Document