Large volume silicic volcanism along the proto-Pacific margin of Gondwana: lithological and stratigraphical investigations from the Antarctic Peninsula

1999 ◽  
Vol 136 (1) ◽  
pp. 1-16 ◽  
Author(s):  
TEAL R. RILEY ◽  
PHILIP T. LEAT

Jurassic magmatism in western Gondwana produced the most voluminous episode of continental volcanism in the Phanerozoic era. During the Early to Middle Jurassic, some 2.5–3 million km3 of dominantly basalt, and to a lesser extent rhyolite, were erupted onto a supercontinent in the early stages of break-up. The major silicic portion of the Gondwana magmatic province is exposed in Patagonian South America. The volcanic rocks of Patagonia have been collectively termed the Chon-Aike Province and constitute one of the world's most voluminous silicic provinces. The volcanic rocks are predominantly pyroclastic, dominated by ignimbrite units of rhyolite composition. Volcanic rocks crop out sporadically across much of the once contiguous Antarctic Peninsula, and are considered to form an extension of the Chon-Aike Province. A continuation of the province to include the Antarctic Peninsula would extend its strike length along the active Pacific margin by c. 2000 km.Volcanic rocks exposed along the east coast of the Antarctic Peninsula, defined here as the Mapple Formation, are also dominated by rhyolitic ignimbrite flows, with individual units up to 80 m in thickness, and a total thickness of c. 1 km. The ignimbrites vary in degree of welding, from high-grade rheomorphic ignimbrites with parataxitic textures, to unwelded, lithic-rich ignimbrites. Rhyolite lava flows, air-fall horizons, debris flow deposits and epiclastic deposits are volumetrically minor, occurring as interbedded units within the ignimbrite succession.The lithology and stratigraphy of the Jurassic volcanic rocks of the Mapple Formation are presented, and comparisons are made to the Chon-Aike Province. A consistent stratigraphy of Permo-Triassic metasedimentary rocks, unconformably overlain by terrestrial mudstone–siltstone sequences, which are in turn conformably overlain by largely silicic, subaerial volcanic rocks, is present at several localities along the Antarctic Peninsula, and at localities in the Chon-Aike Province. Precise (zircon U–Pb) Middle Jurassic ages exist for two volcanic formations from the Antarctic Peninsula, and a Middle–Lower Jurassic age has been suggested for the underlying sedimentary formations based on fossil flora analysis. The Antarctic Peninsula chronostratigraphy, coupled with lithological similarities, indicate a close relationship to those sequences of the Chon-Aike province.

2021 ◽  
pp. M55-2018-36 ◽  
Author(s):  
Teal R. Riley ◽  
Philip T. Leat

AbstractThe break-up of Gondwana during the Early–Middle Jurassic was associated with flood basalt volcanism in southern Africa and Antarctica (Karoo–Ferrar provinces), and formed one of the most extensive episodes of continental magmatism of the Phanerozoic. Contemporaneous felsic magmatism along the proto-Pacific margin of Gondwana has been referred to as a silicic large igneous province, and is exposed extensively in Patagonian South America, the Antarctic Peninsula and elsewhere in West Antarctica. Jurassic-age silicic volcanism in Patagonia is defined as the Chon Aike province and forms one of the most voluminous silicic provinces globally. The Chon Aike province is predominantly pyroclastic in origin, and is characterized by crystal tuffs and ignimbrite units of rhyolite composition. Silicic volcanic rocks of the once contiguous Antarctic Peninsula form a southward extension of the Chon Aike province and are also dominated by silicic ignimbrite units, with a total thickness exceeding 1 km. The ignimbrites include high-grade rheomorphic ignimbrites, as well as unwelded, lithic-rich ignimbrites. Rhyolite lava flows, air-fall horizons, debris-flow deposits and epiclastic deposits are volumetrically minor, occurring as interbedded units within the ignimbrite succession.


2010 ◽  
Vol 147 (4) ◽  
pp. 581-595 ◽  
Author(s):  
TEAL R. RILEY ◽  
MICHAEL J. FLOWERDEW ◽  
MORAG A. HUNTER ◽  
MARTIN J. WHITEHOUSE

AbstractSilicic volcanism atc.168 Ma has been identified previously on the Antarctic Peninsula, and the Mapple Formation, which includes those volcanic rocks, has been defined and documented from one area of the east coast of Graham Land. Based on age and geochemical criteria, correlations have been made to the extensive Chon Aike Province of South America, which has been demonstrated to be one of the largest silicic volcanic provinces in the world. Rhyolitic and intermediate composition volcanic successions from six separate localities on the east coast of the Antarctic Peninsula are described here and are confirmed as correlatives of the Mapple Formation, based on newly acquired geochronology and field observations. They are dominantly rhyolitic crystal tuffs and/or ignimbrites with ages in the interval 162–168 Ma, overlapping with the age of the Mapple Formation (167–171 Ma) at the type locality. Andesitic agglomerates are also described, which are included in the same event and demonstrate the occurrence of rare intermediate volcanism, which is also seen in the Chon Aike Province. A new group, the Graham Land Volcanic Group, is defined here, and criteria are established which allow the separation of some volcanic successions out of the previously defined Antarctic Peninsula Volcanic Group, which takes no account of tectonic setting, eruption age or geochemistry.


2021 ◽  
pp. M55-2018-68 ◽  
Author(s):  
Philip T. Leat ◽  
Teal R. Riley

AbstractThe Antarctic Peninsula contains a record of continental-margin volcanism extending from Jurassic to Recent times. Subduction of the Pacific oceanic lithosphere beneath the continental margin developed after Late Jurassic volcanism in Alexander Island that was related to extension of the continental margin. Mesozoic ocean-floor basalts emplaced within the Alexander Island accretionary complex have compositions derived from Pacific mantle. The Antarctic Peninsula volcanic arc was active from about Early Cretaceous times until the Early Miocene. It was affected by hydrothermal alteration, and by regional and contact metamorphism generally of zeolite to prehnite–pumpellyite facies. Distinct geochemical groups recognized within the volcanic rocks suggest varied magma generation processes related to changes in subduction dynamics. The four groups are: calc-alkaline, high-Mg andesitic, adakitic and high-Zr, the last two being described in this arc for the first time. The dominant calc-alkaline group ranges from primitive mafic magmas to rhyolite, and from low- to high-K in composition, and was generated from a mantle wedge with variable depletion. The high-Mg and adakitic rocks indicate periods of melting of the subducting slab and variable equilibration of the melts with mantle. The high-Zr group is interpreted as peralkaline and may have been related to extension of the arc.


2021 ◽  
pp. M55-2018-40
Author(s):  
Malcolm J. Hole

AbstractScattered occurrences of Miocene–Recent volcanic rocks of the alkaline intraplate association represent one of the last expressions of magmatism along the Antarctic Peninsula. The volcanic rocks were erupted after the cessation of subduction which stopped following a series of northward-younging ridge crest–trench collisions. Volcanism has been linked to the development of a growing slab window beneath the extinct convergent margin. Geochemically, lavas range from olivine tholeiite through to basanite and tephrite. Previous studies have emphasized the slab-window tectonic setting as key to allowing melting of peridotite in the asthenospheric void caused by the passage of the slab beneath the locus of volcanism. This hypothesis is revisited in the light of more recent petrological research, and an origin from melting of subducted slab-hosted pyroxenite is considered here to be a more viable alternative for their petrogenesis. Because of the simple geometry of ridge subduction, and the well-established chronology of ridge crest–trench collisions, the Antarctic Peninsula remains a key region for understanding the transition from active to passive margin resulting from cessation of subduction. However, there are still some key issues relating to their tectonomagmatic association, and, principally, the poor geochronological control on the volcanic rocks requires urgent attention.


1982 ◽  
Vol 3 ◽  
pp. 77-82 ◽  
Author(s):  
Christopher S. M. Doake

Data from ice rises on the east coast of the Antarctic Peninsula can be interpreted as showing that the ice is thinning at rates of up 0.5 m a−1. However, a level line between two nunataks in Palmer Land showed no change in surface elevation over a period of 5 a. Melt rates on George VI Ice Shelf vary with position and may indicate that parts of the ice shelf are thickening at the rate of several m a−1, presumably in response to a higher accumulation rate over the peninsula a few hundred years ago. A small valley glacier, Spartan Glacier, is wasting away at about 0.27 m a−1. Ice fronts on both east and west coasts of the peninsula have been retreating for the last 30 a. It seems that there is general glacier recession in response to a wanner climate and decreased snowfall for at least the last 30 a, while parts of the peninsula are still thickening in response to a high accumulation rate several hundred years ago.


1982 ◽  
Vol 3 ◽  
pp. 77-82 ◽  
Author(s):  
Christopher S. M. Doake

Data from ice rises on the east coast of the Antarctic Peninsula can be interpreted as showing that the ice is thinning at rates of up 0.5 m a−1. However, a level line between two nunataks in Palmer Land showed no change in surface elevation over a period of 5 a. Melt rates on George VI Ice Shelf vary with position and may indicate that parts of the ice shelf are thickening at the rate of several m a−1, presumably in response to a higher accumulation rate over the peninsula a few hundred years ago. A small valley glacier, Spartan Glacier, is wasting away at about 0.27 m a−1. Ice fronts on both east and west coasts of the peninsula have been retreating for the last 30 a. It seems that there is general glacier recession in response to a wanner climate and decreased snowfall for at least the last 30 a, while parts of the peninsula are still thickening in response to a high accumulation rate several hundred years ago.


2016 ◽  
Vol 29 (1) ◽  
pp. 47-60 ◽  
Author(s):  
T.R. Riley ◽  
M.J. Flowerdew ◽  
R.J. Pankhurst ◽  
P.T. Leat ◽  
I.L. Millar ◽  
...  

AbstractThe continental margin of Gondwana preserves a record of long-lived magmatism from the Andean Cordillera to Australia. The crustal blocks of West Antarctica form part of this margin, with Palaeozoic–Mesozoic magmatism particularly well preserved in the Antarctic Peninsula and Marie Byrd Land. Magmatic events on the intervening Thurston Island crustal block are poorly defined, which has hindered accurate correlations along the margin. Six samples are dated here using U-Pb geochronology and cover the geological history on Thurston Island. The basement gneisses from Morgan Inlet have a protolith age of 349±2 Ma and correlate closely with the Devonian–Carboniferous magmatism of Marie Byrd Land and New Zealand. Triassic (240–220 Ma) magmatism is identified at two sites on Thurston Island, with Hf isotopes indicating magma extraction from Mesoproterozoic-age lower crust. Several sites on Thurston Island preserve rhyolitic tuffs that have been dated at 182 Ma and are likely to correlate with the successions in the Antarctic Peninsula, particularly given the pre-break-up position of the Thurston Island crustal block. Silicic volcanism was widespread in Patagonia and the Antarctic Peninsula at ~ 183 Ma forming the extensive Chon Aike Province. The most extensive episode of magmatism along the active margin took place during the mid-Cretaceous. This Cordillera ‘flare-up’ event of the Gondwana margin is also developed on Thurston Island with granitoid magmatism dated in the interval 110–100 Ma.


1989 ◽  
Vol 1 (3) ◽  
pp. 239-248 ◽  
Author(s):  
P.M. Rees ◽  
J.L. Smellie

A terrestrial sequence on Livingston Island, South Shetland Islands, known as the Williams Point Beds contains a well-preserved, diverse fossil flora previously assigned a Triassic age. Because of their supposed age, volcanic provenance and evidence for active volcanism, the Williams Point Beds have occupied a unique position in Gondwana (pre-Jurassic) stratigraphy in the Antarctic Peninsula region. However, a large new collection of plant specimens obtained at Williams Point has yielded several species of angiosperm leaves, which are abundant and occur at all levels within the Williams Point Beds sequence. Thus, a Triassic age is no longer tenable. On the basis of the plants present and published radiometric ages for associated strata, the Williams Point Beds fossil flora is reassigned to the Cretaceous, and there is some evidence for a more restricted Albian–Cenomanian age. This revision of the age of the Williams Point Beds removes all direct evidence for an active Triassic volcanic arc in the Antarctic Peninsula region.


1986 ◽  
Vol 123 (6) ◽  
pp. 699-702 ◽  
Author(s):  
J. A. Naranjo ◽  
A. Puig ◽  
M. Suárez

AbstractRadiometric dates on specimens of plutons of the Coastal Cordillera of Atacama span the period 300–110 Ma. A group of dates cluster around 190 Ma and evidence is presented which strongly suggests that they represent near crystallization ages. The geographic distribution of these plutons, adjacent to Liassic tuffs and lavas (Pan de Azúcar and Posada de los Hidalgo formations), suggests a genetic relationship between them, and that the plutons were the roots of the Lower Jurassic volcanic chain. The location of these granitoids to the west of the Liassic volcanic rocks, favours a previous idea that the Liassic basin extended eastwards as a back-arc or intra-arc basin. The host rocks to the Lower Jurassic plutons include Palaeozoic granitoids and metasedimentary rocks, indicating that the volcanic chain was founded on continental crust. The distance from the Liassic plutons to the present-day trench is less than 100 km, which indicates the possibility that part of the arc-trench system of that time is missing.


Sign in / Sign up

Export Citation Format

Share Document