scholarly journals Rings which resemble rings of entire functions

1983 ◽  
Vol 24 (1) ◽  
pp. 7-16
Author(s):  
David E. Rush

Since Helmer's 1940 paper [9] laid the foundations for the study of the ideal theory of the ring A(ℂ) of entire functions, many interesting results have been obtained for the rings A(X) of analytic functions on non-compact connected Riemann surfaces. For example, the partially ordered set Spec (A(ℂ) of prime ideals of A(ℂ) has been described by Henrikson and others [2], [10], [11]. Also, it has been shown by Ailing [4] that Spec(A(ℂ))sSpec(A(X)) as topological spaces for any non-compact connected Riemann surface X. Many results on the valuation theory of A(X) have also been obtained [1], [2]. In this note we show that a large portion of the results on the rings A(X) extend to the W-rings with complete principal divisor space which were defined by J. Klingen in [15], [16]. Therefore, many properties of A(ℂ) are shared by its non-archimedian counterparts studied by M. Lazard, M. Krasner, and others [8], [17], [18].

1975 ◽  
Vol 27 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Andrew Adler ◽  
R. Douglas Williams

Let C(X) be the ring of all real-valued continuous functions on a completely regular topological space X, and let A﹛Y) be the ring of all functions analytic on a connected non-compact Riemann surface F. The ideal theories of these two function rings have been extensively studied since the fundamental papers of E. Hewitt on C﹛X)[12] and of M. Henriksen on the ring of entire functions [10; 11]. Despite the obvious differences between these two rings, it has turned out that there are striking similarities between their ideal theories. For instance, non-maximal prime ideals of A (F) [2; 11] behave very much like prime ideals of C﹛X)[13; 14], and primary ideals of A(Y) which are not powers of maximal ideals [19] resemble primary ideals of C(X) [15]. In this paper we show that there are very good reasons for these similarities. It turns out that much of the ideal theory of A (Y) is a special case of the ideal theory of rings of continuous functions. We develop machinery that enables one almost automatically to derive results about the ideal theory of A(Y) from corresponding known results of ideal theory for rings of continuous functions.


1971 ◽  
Vol 23 (5) ◽  
pp. 866-874 ◽  
Author(s):  
Raymond Balbes

For a distributive lattice L, let denote the poset of all prime ideals of L together with ∅ and L. This paper is concerned with the following type of problem. Given a class of distributive lattices, characterize all posets P for which for some . Such a poset P will be called representable over. For example, if is the class of all relatively complemented distributive lattices, then P is representable over if and only if P is a totally unordered poset with 0, 1 adjoined. One of our main results is a complete characterization of those posets P which are representable over the class of distributive lattices which are generated by their meet irreducible elements. The problem of determining which posets P are representable over the class of all distributive lattices appears to be very difficult.


1976 ◽  
Vol 28 (4) ◽  
pp. 820-835 ◽  
Author(s):  
William J. Lewis ◽  
Jack Ohm

Let Specie denote the set of prime ideals of a commutative ring with identity R, ordered by inclusion; and call a partially ordered set spectral if it is order isomorphic to Spec R for some R. What are some conditions, necessary or sufficient, for a partially ordered set X to be spectral? The most desirable answer would be the type of result that would allow one to stare at the diagram of a given X and then be able to say whether or not X is spectral. For example, it is known that finite partially ordered sets are spectral (see [2] or [5]).


Author(s):  
L. S. Goddard

The fact that the prime ideal associated with a given irreducible algebraic variety has a finite basis is a pure existence theorem. Only in a few isolated particular cases has the base for the ideal been found, and there appears to be no general method for determining the base which can be carried out in practice. Hilbert, who initiated the theory, proved that the prime ideal defining the ordinary twisted cubic curve has a base consisting of three quadrics, and contributions to the ideal theory of algebraic varieties have been made by König, Lasker, Macaulay and, more recently, by Zariski. A good summary, from the viewpoint of a geometer, is given by Bertini [(1), Chapter XII]. However, the tendency has been towards the development of the pure theory. In the following paper we actually find the bases for the prime ideals associated with certain classes of algebraic varieties. The paper falls into two parts. In Part I there is proved a theorem (the Principal Theorem) of wide generality, and then examples are given of some classes of varieties satisfying the conditions of the theorem. In Part II we find the base for the prime ideals associated with Veronesean varieties and varieties of Segre. The latter are particularly interesting since they represent (1, 1), without exception, the points of a multiply-projective space.


2020 ◽  
Vol 18 (1) ◽  
pp. 1206-1226
Author(s):  
Liviu-Constantin Holdon

Abstract In this paper, by using the ideal theory in residuated lattices, we construct the prime and maximal spectra (Zariski topology), proving that the prime and maximal spectra are compact topological spaces, and in the case of De Morgan residuated lattices they become compact {T}_{0} topological spaces. At the same time, we define and study the reticulation functor between De Morgan residuated lattices and bounded distributive lattices. Moreover, we study the I-topology (I comes from ideal) and the stable topology and we define the concept of pure ideal. We conclude that the I-topology is in fact the restriction of Zariski topology to the lattice of ideals, but we use it for simplicity. Finally, based on pure ideals, we define the normal De Morgan residuated lattice (L is normal iff every proper ideal of L is a pure ideal) and we offer some characterizations.


1977 ◽  
Vol 29 (4) ◽  
pp. 722-737 ◽  
Author(s):  
Monte B. Boisen ◽  
Philip B. Sheldon

Throughout this paper the term ring will denote a commutative ring with unity and the term integral domain will denote a ring having no nonzero divisors of zero. The set of all prime ideals of a ring R can be viewed as a topological space, called the prime spectrum of R, and abbreviated Spec (R), where the topology used is the Zariski topology [1, Definition 4, § 4.3, p. 99]. The set of all prime ideals of R can also be viewed simply as aposet - that is, a partially ordered set - with respect to set inclusion. We will use the phrase the pospec of R, or just Pospec (/v), to refer to this partially ordered set.


1978 ◽  
Vol 70 ◽  
pp. 41-45
Author(s):  
Shigeo Segawa

Consider an open Riemann surface R and a single-valued meromorphic function w = f(p) defined on R. A value w0 in the extended complex plane is said to be a cluster value for w = f(p) if there exists a sequence {pn } in R accumulating at the ideal boundary of R such that


2009 ◽  
Vol 19 (2) ◽  
pp. 337-355 ◽  
Author(s):  
M. ALI-AKBARI ◽  
B. HONARI ◽  
M. POURMAHDIAN ◽  
M. M. REZAII

In this paper we study quasi-metric spaces using domain theory. Our main objective in this paper is to study the maximal point space problem for quasi-metric spaces. Here we prove that quasi-metric spaces that satisfy certain completeness properties, such as Yoneda and Smyth completeness, can be modelled by continuous dcpo's. To achieve this goal, we first study the partially ordered set of formal balls (BX, ⊑) of a quasi-metric space (X, d). Following Edalat and Heckmann, we prove that the order properties of (BX, ⊑) are tightly connected to topological properties of (X, d). In particular, we prove that (BX, ⊑) is a continuous dcpo if (X, d) is algebraic Yoneda complete. Furthermore, we show that this construction gives a model for Smyth-complete quasi-metric spaces. Then, for a given quasi-metric space (X, d), we introduce the partially ordered set of abstract formal balls (BX, ⊑, ≺). We prove that if the conjugate space (X, d−1) of a quasi-metric space (X, d) is right K-complete, then the ideal completion of (BX, ⊑, ≺) is a model for (X, d). This construction provides a model for any Yoneda-complete quasi-metric space (X, d), as well as the Sorgenfrey line, Kofner plane and Michael line.


Author(s):  
Nicholas Bruno

The work of Helmer [Divisibility properties of integral functions, Duke Math. J. 6(2) (1940) 345–356] applied algebraic methods to the field of complex analysis when he proved the ring of entire functions on the complex plane is a Bezout domain (i.e. all finitely generated ideals are principal). This inspired the work of Henriksen [On the ideal structure of the ring of entire functions, Pacific J. Math. 2(2) (1952) 179–184. On the prime ideals of the ring of entire functions, Pacific J. Math. 3(4) (1953) 711–720] who proved a correspondence between the maximal ideals within the ring of entire functions and ultrafilters on sets of zeroes as well as a correspondence between the prime ideals and growth rates on the multiplicities of zeroes. We prove analogous results on rings of analytic functions in the non-Archimedean context: all finitely generated ideals in the ring of analytic functions on an annulus of a characteristic zero non-Archimedean field are two-generated but not guaranteed to be principal. We also prove the maximal and prime ideal structure in the non-Archimedean context is similar to that of the ordinary complex numbers; however, the methodology has to be significantly altered to account for the failure of Weierstrass factorization on balls of finite radius in fields which are not spherically complete, which was proven by Lazard [Les zeros d’une function analytique d’une variable sur un corps value complet, Publ. Math. l’IHES 14(1) (1942) 47–75].


Sign in / Sign up

Export Citation Format

Share Document