104. Studies in Cheddar Cheese. IV. Observations on the Lactic Acid Flora of Cheddar Cheese made from Clean Milk

1935 ◽  
Vol 6 (2) ◽  
pp. 175-190 ◽  
Author(s):  
John Gilbert Davis

1. The lactic acid flora of Cheddar cheese made from milk of certified quality form a well-defined, physiologically homogeneous group of bacteria, growing best over a temperature range of from 22 to 37° C. They may be classified into four well-defined types, Str. lactis, Str. cremoris, Sbm. plantarum and Sbm. casei, and have been studied over a period of five years. It appears from the evidence found that Str. lactis and Str. cremoris are distinct species, but that Sbm. casei and Sbm. plantarum represent different stages in the adaptation of a common progenitor to conditions in a ripening cheese. Both the streptococci and the streptobacteria appear to be unable to oxidise sugars and may thus be considered indifferent to molecular oxygen.2. A study of their frequency distribution from the curd at making to an 18 months old cheese has shown that Str. lactis and Str. cremoris are equally viable during the first month, after which the rod forms begin to predominate, Sbm. plantarum and, later, Sbm. casei being found. The former lactobacillus is only found when the cheese is from 1 to 5 months old, the flora consisting entirely of Sbm. casei after this time. The general vigour of all strains decreases with increasing age of the cheese. There is a marked correlation between the shape of the cell, the viability of the organism in cheese and its resistance to acids and lactates.3. The factors controlling the sequence of flora in Cheddar cheese are discussed. There is no evidence that titratable acidity, oxygen tension and differential carbon sources are responsible for the sequence. It is suggested that lactate concentration, the extent of protein degradation and osmotic pressure are factors responsible for the gradual replacement of the streptococci by the rod forms.4. The significance of sugar fermentations by the lactic 'acid bacteria studied is discussed. The slow production of lactase is shown to be the reason for the slow growth of weakened strains in litmus milk.5. Str. cremoris predominates over Str. lactis in the depth of the cheese in the early stages of ripening, whereas near the surface the reverse holds. Certain strains of Str. cremoris isolated from the depth of the cheese were particularly vigorous in growth in litmus milk, forming gas and beginning to peptonise the milk in about 3 days. Such strains consisted of very long chains of large cells of peculiar morphology. It is suggested that this finding is related to the known greater rate of ripening in the depth of the cheese.

1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


Foods ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 100-119 ◽  
Author(s):  
Alice Nongonierma ◽  
Magdalena Abrlova ◽  
Kieran Kilcawley

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mariya Dushkova ◽  
Siyka Kodinova ◽  
Zapryana Denkova ◽  
Velichka Yanakieva ◽  
Nikolay Dimitrov Menkov

Abstract The purpose of this study was to investigate the microbiological (number of viable lactic acid bacteria and bifidobacteria), physicochemical (dry matter, protein and fat contents, titratable acidity, and pH), and sensory characteristics (appearance of coagulum, taste and aroma, structure at cutting, color, and consistency at shattering) of probiotic Bulgarian yoghurts obtained by ultrafiltration of goat’s milk. These yoghurts were obtained using volume reduction ratios of 2 and 3 with the probiotic starters MZ2f, MZ2f + Bifidobacterium bifidum BB – 87, and MZ2f + Lactobacillus acidophilus LAB – 8. The increase in the level of the concentration by ultrafiltration led to an increase in the dry matter, protein and fat contents of the yoghurts, in the number of lactic acid bacteria and titratable acidity, and to a decrease in the pH. The twofold concentration by ultrafiltration resulted in a higher number of lactic acid bacteria in comparison with yoghurts made without ultrafiltration, and with better sensory characteristics compared to yoghurts without and with threefold ultrafiltration. The higher number of viable cells and better sensory characteristics were obtained for yoghurts with MZ2f + Bifidobacterium bifidum BB – 87 and MZ2f + Lactobacillus acidophilus LAB – 8 in comparison with MZ2f alone.


1996 ◽  
Vol 59 (9) ◽  
pp. 984-987 ◽  
Author(s):  
A. N. MUTUKUMIRA ◽  
S. B. FERESU ◽  
J. A. NARVHUS ◽  
R. K. ABRAHAMSEN

Chemical and microbiological analyses were carried out on 10 samples of raw milk collected over 6 months from the Nharira/Lancashire Milk Collection Center. The milk center is run by smallholder farmers. The purpose of the study was to evaluate the quality of the raw milk delivered to the milk collection center. The average chemical characteristics of the milk were (%): titratable acidity expressed as lactic acid, 0.21; total protein, 3.19; fat, 3.52; total solids, 11.76; and solids not fat, 8.25; the pH varied from 6.15 to 6.65. There were large variations in the microbiological composition of the raw milk with total aerobic counts ranging from 6.2 × 103 to 7.8 × 107 CFU/ml, coli forms from 3.2 × 102 to 2.3 × 105, and lactic acid bacteria from less than 1 × 103 to 2.9 × 106 CFU/ml. Yeasts and molds were less than 100 CFU/ml in 7 of the 10 samples analyzed.


2005 ◽  
Vol 68 (11) ◽  
pp. 2356-2361 ◽  
Author(s):  
JIN KYUNG KIM ◽  
ELAINE M. D'SA ◽  
MARK A. HARRISON ◽  
JUDY A. HARRISON ◽  
ELIZABETH L. ANDRESS

Listeria monocytogenes can survive and grow in refrigerated foods with pH values of approximately 4.0 to 5.0 and salt concentrations of 3 to 4%. Home-fermented refrigerator dill pickles fit this description. Contamination of this product with L. monocytogenes could cause serious problems because these items are not heated prior to consumption. L. monocytogenes survival and growth patterns were investigated in refrigerator dill pickles at 1.3, 3.8, and 7.6% salt concentrations. Pickling cucumbers were dipped into an inoculum of L. monocytogenes, brine mixtures were added, and cucumbers were held at room temperature for 1 week and then refrigerated for up to 3 months. The pH, NaCl percentage, titratable acidity percentage, and total populations of Listeria and aerobic, psychrotrophic, and lactic acid bacteria were measured at the addition of brine, after 2, 4, and 7 days of storage at room temperature, and then weekly during refrigerated storage. The initial Listeria population was 5.4 to 5.6 log CFU/cm2 on cucumber surfaces and 3.9 to 4.6 log CFU/g internally. There was an approximate 0.3- to 1-log increase during room temperature fermentation followed by a population decline during refrigerator storage, with a greater decrease in the brines with the highest NaCl concentration. Up to 49 days, the internal tissue of pickles with 1.3, 3.8, or 7.6% salt concentrations were presumptively positive for L. monocytogenes by the enrichment method, and at 91 days the surfaces of such pickles were still positive for L. monocytogenes. Populations of total aerobes and lactic acid bacteria increased during room temperature storage and decreased gradually during refrigerated storage.


2006 ◽  
Vol 89 (5) ◽  
pp. 1452-1466 ◽  
Author(s):  
S. Agarwal ◽  
K. Sharma ◽  
B.G. Swanson ◽  
G.Ü. Yüksel ◽  
S. Clark

1998 ◽  
Vol 8 (4) ◽  
pp. 267-274 ◽  
Author(s):  
Harry Laan ◽  
Saw Eng Tan ◽  
Paul Bruinenberg ◽  
Gaëtan Limsowtin ◽  
Malcolm Broome

Sign in / Sign up

Export Citation Format

Share Document