Size distribution of fat globules in cow's milk during milking, measured with a Coulter counter

1969 ◽  
Vol 36 (2) ◽  
pp. 177-182 ◽  
Author(s):  
Elizabeth A. Kernohan ◽  
E. E. Lepherd

SummaryA Coulter counter was used to measure the diameters and numbers of fat globules in serial samples taken during a single milking of each of 8 cows. Milk fat percentages of samples were estimated by the Babcock method. The average globule diameter, globule number and fat percentage all increased during milking. Regression analyses indicated that fat percentage was a stronger function of fat globule diameter than of globule number. The results are discussed with relation to the rise in fat percentage that occurs during milking.

Author(s):  
Prof. Asoc. Dr. Shurki MAXHUNI ◽  
Prof.Asiss.Dr.Nerimane BAJRAKTARI

The dairy industry seems to have convinced the food industry that whey is a miracle product. The list of supposed benefits it gives to food is as long as your arm. Some of the benefits may be real. Whey is the liquid remaining after milk has been curdled and strained. It is a by-product of the manufacture of cheese or casein and has several commercial uses. To produce cheese, rennet or an edible acid is added to heated milk. This makes the milk coagulate or curdle, separating the milk solids (curds) from the liquid whey. Sweet whey is the byproduct of rennet-coagulated cheese and acid whey (also called sour whey) is the byproduct of acid-coagulated cheese. Sweet whey has a pH greater than or equal to 5.6, acid whey has a pH less than or equal to 5.1. Whey is also a great way to add sweetness to a product without having to list sugar as an ingredient as whey contains up to 75% lactose. And it sounds healthy. This study is done to research the examinations for the production of mozzarella cheese from Cow’s milk, after research and analyses of a physical-chemical peculiar feature of whey from coagulum. We have followed the processes from the drying of whey from the coagulum analyzer's physical-chemical peculiar feature. We carried out three experiments. For every experiment, we took three patterns and analyzed the physical-chemical. The calculation was appraised statistically. This paper deals with the research of% of whey fat during the process of milk production from standardized to non-standardized milk. Where% of whey fat should be an economic indicator for standardizing milk for dairy production.


1954 ◽  
Vol 21 (1) ◽  
pp. 50-54 ◽  
Author(s):  
W. G. Whittlestone

An examination of the fat-globule size distribution pattern has been made throughout the lactation for one quarter of one cow, samples being taken at different stages in the milking process using a normal milking machine with sampling device attached.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4541
Author(s):  
James Hedrick ◽  
Michael Yeiser ◽  
Cheryl L. Harris ◽  
Jennifer L. Wampler ◽  
H. Elisha London ◽  
...  

Inclusion of bovine-derived milk fat globule membrane (bMFGM) or bMFGM components in infant formulas (IFs) may support healthy brain development. This double-blind, prospective trial evaluated growth, tolerance, and iron status in infants receiving added bMFGM and modified protein, iron, and arachidonic acid (ARA) concentrations in IF. Healthy term infants were randomized to: control (marketed, routine cow’s milk-based IF/100 kcal: 2.1 g protein, 1.8 mg iron, 34 mg ARA) or INV-MFGM (investigational cow’s milk-based IF/100 kcal: 1.9 g protein, 1.2 mg iron, 25 mg ARA and whey protein-lipid concentrate, 5 g/L (source of bMFGM)). Anthropometrics, stool characteristics, fussiness, and gassiness through day 365 and blood markers of iron status at day 365 were evaluated. The primary outcome was rate of weight gain from 14–120 days of age. Of 373 infants enrolled (control: 191, INV-MFGM: 182), 275 completed the study (control: 141; INV-MFGM: 134). No group differences in growth rate (g/day) from day 14–120 or study discontinuation were detected. Few group differences in growth or parent-reported fussiness, gassiness, or stool characteristics were detected. No group differences were detected in hemoglobin, hematocrit, or incidence of anemia. In healthy term infants, bMFGM and modified protein, iron, and ARA concentrations in a cow’s milk-based IF were well-tolerated, associated with adequate growth throughout the first year of life, and supported normal iron status at one year of age.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


Sign in / Sign up

Export Citation Format

Share Document