The Role of β-lactoglobulin in the primary phase of rennin action on heated casein micelles and heated milk

1974 ◽  
Vol 41 (3) ◽  
pp. 367-372 ◽  
Author(s):  
J. V. Wheelock ◽  
A. Kirk

SummaryIt has been shown that the inhibition caused by heat treatment, of the primary phase of rennin action on casein micelles, is dependent on the presence of β-lactoglobulin. The degree of inhibition increased with increasing amounts of added β-lactoglobulin for both heated casein micelles and heated skim-milk to a constant value. The results are fully consistent with the hypothesis that the inhibition is caused by complex formation between β-lactoglobulin and κ-casein when milk is heated.

2000 ◽  
Vol 67 (3) ◽  
pp. 329-348 ◽  
Author(s):  
ERIC C. NEEDS ◽  
MARTA CAPELLAS ◽  
A. PATRICIA BLAND ◽  
PRETIMA MANOJ ◽  
DOUGLAS MACDOUGAL ◽  
...  

Heat (85 °C for 20 min) and pressure (600 MPa for 15 min) treatments were applied to skim milk fortified by addition of whey protein concentrate. Both treatments caused > 90% denaturation of β-lactoglobulin. During heat treatment this denaturation took place in the presence of intact casein micelles; during pressure treatment it occurred while the micelles were in a highly dissociated state. As a result micelle structure and the distribution of β-lactoglobulin were different in the two milks. Electron microscopy and immunolabelling techniques were used to examine the milks after processing and during their transition to yogurt gels. The disruption of micelles by high pressure caused a significant change in the appearance of the milk which was quantified by measurement of the colour values L*, a* and b*. Heat treatment also affected these characteristics. Casein micelles are dynamic structures, influenced by changes to their environment. This was clearly demonstrated by the transition from the clusters of small irregularly shaped micelle fragments present in cold pressure-treated milk to round, separate and compact micelles formed on warming the milk to 43 °C. The effect of this transition was observed as significant changes in the colour indicators. During yogurt gel formation, further changes in micelle structure, occurring in both pressure and heat-treated samples, resulted in a convergence of colour values. However, the microstructure of the gels and their rheological properties were very different. Pressure-treated milk yogurt had a much higher storage modulus but yielded more readily to large deformation than the heated milk yogurt. These changes in micelle structure during processing and yogurt preparation are discussed in terms of a recently published micelle model.


2003 ◽  
Vol 70 (4) ◽  
pp. 423-431 ◽  
Author(s):  
P Cayot ◽  
J-F Fairise ◽  
B Colas ◽  
D Lorient ◽  
G Brulé

The enhancement of the strength of set acid gels by heating milk was related to rheological parameters (water retention capacity, storage modulus) of corresponding stirred gels. To obtain accurate rheological data from stirred gel it was necessary to maintain a constant granulometry of gel particles and to recognize time after stirring as a contributing factor. Two hours after stirring, the gel exhibited a higher storage modulus when milk was heated above 80 °C. A measurement of viscosity of just-stirred yoghurt was sufficient to predict correctly the quality of a stirred gel analysed by viscoelastic measurements. Increased resstance to syneresis of just-stirred gels was related to higher viscosity. The quantity of β-lactoglobulin (β-lg) bound to casein micelles explains the improvement of these gel qualities. We have considered that the structure of the initial firm gel (mesostructure level) was conserved in fragments within the stirred gel. Consequently, the explanation given by various authors for the effect of heating milk on the properties of set gels can also be applied to stirred gels. The same mechanism, described in literature for structure formation of set gels from acidified milk is purposed to explain the role of heating milk on the recovery of gel structure after stirring. The β-lg association with casein micelles during heating favoured micelle connections during the acidification. It also favoured the association of gel fragments after stirring during the recovery in gel structure.


1972 ◽  
Vol 39 (3) ◽  
pp. 413-419 ◽  
Author(s):  
G. A. Wilson ◽  
J. V. Wheelock

SummaryThe effect of temperature and time of heating whole milk on the renninclotting time, the primary phase of rennin action and the protein (mainly β-lactoglobulin) soluble in 2% trichloroacetic acid (TCA), have been studied. Considerable changes in these parameters occurred above 60°C. The primary phase was inhibited (the degree of inhibition being both temperature and time-dependent), the clotting time was increased, and the protein soluble in 2% TCA decreased considerably.It is suggested that the inhibition of the primary phase was due to complex formation between κ-casein and β-lactoglobulin, the increase in clotting time to a combination of complex formation and a change in the distribution of Ca, and the decrease in β-lactoglobulin to both its interaction with κ-casein and its heat denaturation. The relevance of such changes to the heat stability of milk is discussed.


1998 ◽  
Vol 65 (4) ◽  
pp. 555-567 ◽  
Author(s):  
JOHN A. LUCEY ◽  
MICHELLE TAMEHANA ◽  
HARJINDER SINGH ◽  
PETER A. MUNRO

The effect of interactions of denatured whey proteins with casein micelles on the rheological properties of acid milk gels was investigated. Gels were made by acidification of skim milk with glucono-δ-lactone at 30°C using reconstituted skim milk powders (SMP; both low- and ultra-low-heat) and fresh skim milk (FSM). The final pH of the gels was ∼4·6. Milks containing associated or ‘bound’ denatured whey proteins (BDWP) with casein micelles were made by resuspending the ultracentrifugal pellet of heated milk in ultrafiltration permeate. Milks containing ‘soluble’ denatured whey protein (SDWP) aggregates were formed by heat treatment of an ultracentrifugal supernatant which was then resuspended with the pellet. Acid gels made from unheated milks had low storage moduli, G′, of <20 Pa. Heating milks at 80°C for 30 min resulted in acid gels with G′ in the range 390–430 Pa. The loss tangent (tan δ) of gels made from heated milk increased after gelation to attain a maximum at pH ∼5·1, but no maximum was observed in gels made from unheated milk. Acid gels made from milks containing BDWP that were made from low-heat SMP, ultra-low-heat SMP and FSM had G′ of about 250, 270 and 310 Pa respectively. Acid gels made from milks containing SDWP that were made from ultra-low-heat SMP or FSM had G′ values in the range 17–30 Pa, but gels made from low-heat SMP had G′ of ∼140 Pa. It was concluded that BDWP were important for the increased G′ of acid gels made from heated milk. Addition of N-ethylmaleimide (NEM) to low-heat reconstituted milk, to block the —SH groups, resulted in a reduction of the G′ of gels formed from heated milk but did not reduce G′ to the value of unheated milk. Addition of 20 mm-NEM to FSM, prior to heat treatment, resulted in gels with a lower G′ value than gels made from reconstituted low-heat SMP. It was suggested that small amounts of denatured whey proteins associated with casein micelles during low-heat SMP manufacture were probably responsible for the higher G′ of gels made from milk containing SDWP and from milk heated in the presence of 20 mm-NEM, compared with gels made from FSM.


1987 ◽  
Vol 54 (3) ◽  
pp. 389-395 ◽  
Author(s):  
David S. Horne

SummaryThe ethanol (EtOH) stability of skim milk and the stability towards aggregation of casein micelles diluted into ethanolic buffer solutions were compared using data obtained from previously published experiments. Differences in absolute stability and in relative response were observed when Ca2+ level and pH were adjusted, the buffer system results lying below those from skim milk in both cases. Increasing the ionic strength of skim milk adjusted to pH 7·0 lowered its EtOH stability whereas increasing the ionic strength of the diluting buffer increased the stability of the casein micelles. The hypothesis is put forward that the differences are due to the simultaneous precipitation of Ca phosphate when EtOH is added to skim milk. This draws calcium from the caseinate sites of the micelle, counteracting the destabilizing effects of the EtOH towards the micelle. Such removal and the consequent restructuring are kinetically controlled and micellar precipitation in skim milk finally occurs when the micellar coagulation time falls within the time scale of the restructuring reactions.


2001 ◽  
Vol 68 (3) ◽  
pp. 471-481 ◽  
Author(s):  
CATHERINE SCHORSCH ◽  
DEBORAH K. WILKINS ◽  
MALCOLM G. JONES ◽  
IAN T. NORTON

The aim of the present work was to investigate the role of whey protein denaturation on the acid induced gelation of casein. This was studied by determining the effect of whey protein denaturation both in the presence and absence of casein micelles. The study showed that milk gelation kinetics and gel properties are greatly influenced by the heat treatment sequence. When the whey proteins are denatured separately and subsequently added to casein micelles, acid-induced gelation occurs more rapidly and leads to gels with a more particulated microstructure than gels made from co-heated systems. The gels resulting from heat-treatment of a mixture of pre-denatured whey protein with casein micelles are heterogeneous in nature due to particulates formed from casein micelles which are complexed with denatured whey proteins and also from separate whey protein aggregates. Whey proteins thus offer an opportunity not only to control casein gelation but also to control the level of syneresis, which can occur.


1993 ◽  
Vol 60 (2) ◽  
pp. 139-150 ◽  
Author(s):  
Theo J. M. Jeurnink ◽  
Kees G. De Kruif

SummarySkim milk was heated at 85 °C for different holding times. As a result of such heating, whey proteins, in particular β-lactoglobulin, denatured and associated with casein micelles. This led to an increase in size of the casein micelles but also to a different interaction between them. Both these changes could be described by using a quantitative model which was developed for the viscosity of so-called adhesive hard spheres. We applied the model successfully to skim milk and were able to describe on a quantitative basis the changes due to the heat treatment of milk. It was shown that after heating the casein micelles became larger and acquired a mutual attraction. The unfolding of the whey proteins and their subsequent association with the casein micelles appeared to be responsible for these changes. How this reaction influences the fouling of heat exchangers is discussed.


1985 ◽  
Vol 48 (6) ◽  
pp. 494-498 ◽  
Author(s):  
B. EKSTRAND ◽  
W. M. A. MULLAN ◽  
A. WATERHOUSE

The antibacterial system, lactoperoxidase-H2O2-SCN− was affected by the presence of heated milk or skim milk reconstituted from powders having received severe heat treatment. This inhibitory effect was related to the increase in exposed sulfhydryl groups and to the redistribution of protein between micellar and whey phases. Chromatographic analyses of heat-treated milk showed that the inhibitory factor was associated with the casein micelle fraction. The inhibition, however, was overcome by addition of unheated skim milk.


2000 ◽  
Vol 67 (1) ◽  
pp. 31-42 ◽  
Author(s):  
ERIC C. NEEDS ◽  
ROBERT A. STENNING ◽  
ALISON L. GILL ◽  
VICTORIA FERRAGUT ◽  
GILLIAN T. RICH

High isostatic pressures up to 600 MPa were applied to samples of skim milk before addition of rennet and preparation of cheese curds. Electron microscopy revealed the structure of rennet gels produced from pressure-treated milks. These contained dense networks of fine strands, which were continuous over much bigger distances than in gels produced from untreated milk, where the strands were coarser with large interstitial spaces. Alterations in gel network structure gave rise to differences in rheology with much higher values for the storage moduli in the pressure-treated milk gels. The rate of gel formation and the water retention within the gel matrix were also affected by the processing of the milk. Casein micelles were disrupted by pressure and disruption appeared to be complete at treatments of 400 MPa and above. Whey proteins, particularly β-lactoglobulin, were progressively denatured as increasing pressure was applied, and the denatured β-lactoglobulin was incorporated into the rennet gels. Pressure-treated micelles were coagulated rapidly by rennet, but the presence of denatured β-lactoglobulin interfered with the secondary aggregation phase and reduced the overall rate of coagulation. Syneresis from the curds was significantly reduced following treatment of the milk at 600 MPa, probably owing to the effects of a finer gel network and increased inclusion of whey protein. Levels of syneresis were more similar to control samples when the milk was treated at 400 MPa or less.


Sign in / Sign up

Export Citation Format

Share Document