On the preferential concentration of solid particles in turbulent channel flow

2001 ◽  
Vol 428 ◽  
pp. 149-169 ◽  
Author(s):  
DAMIAN W. I. ROUSON ◽  
JOHN K. EATON

We present results from a direct numerical simulation of the passive transport of solid particles by a fully developed turbulent channel flow with a Reynolds number of 180 based on the friction velocity and the channel half-width. Three particle sets are studied, ranging in diameter from 0.5 to 1.4 viscous wall units and in aerodynamic time constant from 0.6 to 56 centreline Kolmogorov time scales. We use particle number density histograms and fractal dimensions to show that the level of order in the particle spatial distribution peaks near a Stokes number of unity based on the Kolmogorov time scale. We then quantify the relationship between this spatial distribution and the instantaneous flow topology. The results indicate that the previously reported preferential concentration of particles in low-speed streaks leads to a suppression of particle velocities in the viscous sublayer and buffer region even in the presence of streamwise gravitational acceleration. In other regions of the flow, the particles' non-random spatial distribution is shown to be uncorrelated with the local flow topology. We compare our results with the experimental data of Kulick et al. (1994) and Fessler et al. (1994) and confirm that the latter authors' results were not influenced by turbulence modification.

2010 ◽  
Vol 653 ◽  
pp. 35-56 ◽  
Author(s):  
M. J. BIJLARD ◽  
R. V. A. OLIEMANS ◽  
L. M. PORTELA ◽  
G. OOMS

The results of point-particle Eulerian–Lagrangian direct numerical simulation (DNS) calculations of dilute particle-laden turbulent channel flow are used to study the effect of the particles on the local flow topology. It is found that in the viscous sublayer, the flow becomes increasingly more two-dimensional as the two-way coupling effect (due to interaction between particles and fluid flow) increases with increasing particle load. Beyond the viscous sublayer the modifications in flow topology are not strongly related to the preferential concentration of particles in the flow field, which is in contrast to previous channel flow simulations. The effect of particles on the turbulent flow beyond the viscous sublayer is mostly a result of the overall changing near-wall dynamics of the fluid flow.


Author(s):  
Boris Arcen ◽  
Anne Tanie`re ◽  
Benoiˆt Oesterle´

The importance of using the lift force and wall-corrections of the drag coefficient for modeling the motion of solid particles in a fully-developed channel flow is investigated by means of direct numerical simulation (DNS). The turbulent channel flow is computed at a Reynolds number based on the wall-shear velocity and channel half-width of 185. Contrary to most of the numerical simulations, we consider in the present study a lift force formulation that accounts for the weak and strong shear as well as for the wall effects (hereinafter referred to as optimum lift force), and the wall-corrections of the drag force. The DNS results show that the optimum lift force and the wall-corrections of the drag together have little influence on most of the statistics (particle concentration, mean velocities, and mean relative and drift velocities), even in the near wall region.


1994 ◽  
Vol 6 (11) ◽  
pp. 3742-3749 ◽  
Author(s):  
John R. Fessler ◽  
Jonathan D. Kulick ◽  
John K. Eaton

2019 ◽  
Vol 873 ◽  
pp. 475-507 ◽  
Author(s):  
Junghoon Lee ◽  
Changhoon Lee

We performed two-way coupled direct numerical simulations of turbulent channel flow with Lagrangian tracking of small, heavy spheres at a dimensionless gravitational acceleration of 0.077 in wall units, which is based on the flow condition in the experiment by Gerashchenko et al. (J. Fluid Mech., vol. 617, 2008, pp. 255–281). We removed deposited particles after several collisions with the lower wall and then released new particles near the upper wall to observe direct interactions between particles and coherent structures of near-wall turbulence during gravitational settling through the mean shear. The results indicate that when the Stokes number is approximately 1 on the basis of the Kolmogorov time scale of the flow ($St_{K}\approx 1$), the so-called preferential sweeping occurs in association with coherent streamwise vortices, while the effect of crossing trajectories becomes significant for $St_{K}>1$. Consequently, in either case, the settling particles deposit on the wall without strong accumulation in low-speed streaks in the viscous sublayer. When particles settle through near-wall turbulence from the upper wall, more small-scale vortical structures are generated in the outer layer as low-speed fluid is pulled farther in the direction of gravity, while the opposite is true near the lower wall.


2011 ◽  
Vol 23 (11) ◽  
pp. 113304 ◽  
Author(s):  
R. Zamansky ◽  
I. Vinkovic ◽  
M. Gorokhovski

1974 ◽  
Vol 65 (3) ◽  
pp. 439-459 ◽  
Author(s):  
Helmut Eckelmann

Hot-film anemometer measurements have been carried out in a fully developed turbulent channel flow. An oil channel with a thick viscous sublayer was used, which permitted measurements very close to the wall. In the viscous sublayer between y+ ≃ 0·1 and y+ = 5, the streamwise velocity fluctuations decreased at a higher rate than the mean velocity; in the region y+ [lsim ] 0·1, these fluctuations vanished at the same rate as the mean velocity.The streamwise velocity fluctuations u observed in the viscous sublayer and the fluctuations (∂u/∂y)0 of the gradient at the wall were almost identical in form, but the fluctuations of the gradient at the wall were found to lag behind the velocity fluctuations with a lag time proportional to the distance from the wall. Probability density distributions of the streamwise velocity fluctuations were measured. Furthermore, measurements of the skewness and flatness factors made by Kreplin (1973) in the same flow channel are discussed. Measurements of the normal velocity fluctuations v at the wall and of the instantaneous Reynolds stress −ρuv were also made. Periods of quiescence in the − ρuv signal were observed in the viscous sublayer as well as very active periods where ratios of peak to mean values as high as 30:1 occurred.


2016 ◽  
Vol 08 (12) ◽  
pp. 367-388 ◽  
Author(s):  
Abd Elnaby Kabeel ◽  
Medhat Elkelawy ◽  
Hagar Alm-Eldin Bastawissi ◽  
Ahmed Mohammed Elbanna

2008 ◽  
Author(s):  
G. F. Naterer ◽  
O. B. Adeyinka

This paper presents a new entropy-based metric for local loss coefficients in turbulent flows with heat transfer. Unlike conventional methods of global loss characterization, such as a single valve loss coefficient, this paper examines an entropy-based alternative that tracks local variations of the loss coefficient. The local distribution of entropy production can provide useful information regarding the spatial distribution of mechanical energy losses, which can be then used to systematically optimize thermofluid systems. An application involving turbulent channel flow is specifically investigated. The friction factor is represented in terms of the local entropy production rates. By successfully predicting the local flow irreversibilities with this approach, re-design efforts can be more effectively focused on specific regions of highest entropy production.


Sign in / Sign up

Export Citation Format

Share Document