Chaotic advection in bounded Navier–Stokes flows

2001 ◽  
Vol 431 ◽  
pp. 347-370 ◽  
Author(s):  
IGOR MEZIĆ

We discuss mixing and transport in three-dimensional, steady, Navier–Stokes flows with the no-slip condition at the boundaries. The advective flux is related to the dynamics of the Navier–Stokes equations and a prediction is made of the scaling of the advective flux with the Reynolds number: the flux is expected to decay as the Reynolds number goes to infinity. This prediction is made via a Melnikov-type calculation together with boundary layer concepts through which the flow is split into an integrable and a small non-integrable part. The rate of decay is related to the details of viscous flow in boundary layers. The Melnikov function is related to the Bernoulli integral of the underlying Euler flow. The effects of molecular diffusivity are discussed and the effective axial diffusivity scaling predicted as a function of Reynolds and Péclet numbers. Using these ideas, we study the mass transport in the wavy vortex flow in the Taylor–Couette apparatus as a particular example. We propose an explanation of the observed non-monotonic behaviour of flux with increasing Reynolds number that was not captured in any of the previous models. It is shown that there is a Reynolds number at which the axial flux in the wavy vortex flow is maximized. At the low range of Reynolds numbers for which the wavy vortex flow is stable the flux increases, while for large Reynolds numbers it decreases. We compare these predictions with the available experimental and numerical data on the wavy vortex flow.

1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


1990 ◽  
Vol 220 ◽  
pp. 459-484 ◽  
Author(s):  
H. M. Badr ◽  
M. Coutanceau ◽  
S. C. R. Dennis ◽  
C. Ménard

The unsteady flow past a circular cylinder which starts translating and rotating impulsively from rest in a viscous fluid is investigated both theoretically and experimentally in the Reynolds number range 103 [les ] R [les ] 104 and for rotational to translational surface speed ratios between 0.5 and 3. The theoretical study is based on numerical solutions of the two-dimensional unsteady Navier–Stokes equations while the experimental investigation is based on visualization of the flow using very fine suspended particles. The object of the study is to examine the effect of increase of rotation on the flow structure. There is excellent agreement between the numerical and experimental results for all speed ratios considered, except in the case of the highest rotation rate. Here three-dimensional effects become more pronounced in the experiments and the laminar flow breaks down, while the calculated flow starts to approach a steady state. For lower rotation rates a periodic structure of vortex evolution and shedding develops in the calculations which is repeated exactly as time advances. Another feature of the calculations is the discrepancy in the lift and drag forces at high Reynolds numbers resulting from solving the boundary-layer limit of the equations of motion rather than the full Navier–Stokes equations. Typical results are given for selected values of the Reynolds number and rotation rate.


2015 ◽  
Vol 777 ◽  
pp. 219-244 ◽  
Author(s):  
Jesse T. Ault ◽  
Kevin K. Chen ◽  
Howard A. Stone

Direct numerical simulations were used to investigate the downstream decay of fully developed flow in a $180^{\circ }$ curved pipe that exits into a straight outlet. The flow is studied for a range of Reynolds numbers and pipe-to-curvature radius ratios. Velocity, pressure and vorticity fields are calculated to visualize the downstream decay process. Transition ‘decay’ lengths are calculated using the norm of the velocity perturbation from the Hagen–Poiseuille velocity profile, the wall-averaged shear stress, the integral of the magnitude of the vorticity, and the maximum value of the $Q$-criterion on a cross-section. Transition lengths to the fully developed Poiseuille distribution are found to have a linear dependence on the Reynolds number with no noticeable dependence on the pipe-to-curvature radius ratio, despite the flow’s dependence on both parameters. This linear dependence of Reynolds number on the transition length is explained by linearizing the Navier–Stokes equations about the Poiseuille flow, using the form of the fully developed Dean flow as an initial condition, and using appropriate scaling arguments. We extend our results by comparing this flow recovery downstream of a curved pipe to the flow recovery in the downstream outlets of a T-junction flow. Specifically, we compare the transition lengths between these flows and document how the transition lengths depend on the Reynolds number.


2013 ◽  
Vol 734 ◽  
pp. 275-316 ◽  
Author(s):  
Rashad Moarref ◽  
Ati S. Sharma ◽  
Joel A. Tropp ◽  
Beverley J. McKeon

AbstractWe study the Reynolds-number scaling and the geometric self-similarity of a gain-based, low-rank approximation to turbulent channel flows, determined by the resolvent formulation of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), in order to obtain a description of the streamwise turbulence intensity from direct consideration of the Navier–Stokes equations. Under this formulation, the velocity field is decomposed into propagating waves (with single streamwise and spanwise wavelengths and wave speed) whose wall-normal shapes are determined from the principal singular function of the corresponding resolvent operator. Using the accepted scalings of the mean velocity in wall-bounded turbulent flows, we establish that the resolvent operator admits three classes of wave parameters that induce universal behaviour with Reynolds number in the low-rank model, and which are consistent with scalings proposed throughout the wall turbulence literature. In addition, it is shown that a necessary condition for geometrically self-similar resolvent modes is the presence of a logarithmic turbulent mean velocity. Under the practical assumption that the mean velocity consists of a logarithmic region, we identify the scalings that constitute hierarchies of self-similar modes that are parameterized by the critical wall-normal location where the speed of the mode equals the local turbulent mean velocity. For the rank-1 model subject to broadband forcing, the integrated streamwise energy density takes a universal form which is consistent with the dominant near-wall turbulent motions. When the shape of the forcing is optimized to enforce matching with results from direct numerical simulations at low turbulent Reynolds numbers, further similarity appears. Representation of these weight functions using similarity laws enables prediction of the Reynolds number and wall-normal variations of the streamwise energy intensity at high Reynolds numbers (${Re}_{\tau } \approx 1{0}^{3} {\unicode{x2013}} 1{0}^{10} $). Results from this low-rank model of the Navier–Stokes equations compare favourably with experimental results in the literature.


Vestnik MGSU ◽  
2019 ◽  
pp. 332-346
Author(s):  
Andrey L. Zuikov

Introduction. The work relates to the scientific foundations of hydraulic and energy construction and is devoted to the study of laminar flows with coaxial oppositely-rotating layers. In the literature, such flows are called counter-vortex. In the turbulent range, counter-vortex flows are characterized by intensive mixing of the medium, which is widely used in the technologies of mixing non-natural and multi-phase media in thermal and atomic energy, in systems of mass- and heat transfer, in chemistry and microbiology, ecology, engine and rocket production. The aim of the theoretical study is to study the physical laws of the hydrodynamics of counter-vortex flows. Research methods. The theoretical Navier-Stokes equations and continuity equation are the basis of the theoretical model of the laminar counter-vortex flow. Results. Assuming the radial velocities are much less than the azimuthal and axial velocities and taking the Oseen approximation, the solution of the Navier - Stokes equations is obtained as Fourier - Bessel series or products of Fourier - Bessel series. In particular, the following were obtained: formulas for calculating the radial-longitudinal distributions of the normalized azimuthal, axial and radial velocities in the flow under study, the velocities are presented graphically in the form of radial profiles; equations for the calculation of current lines and viscous vortex fields, which are also presented in the form of graphs, were obtained. The two-layer and four-layer counter-vortex flows are considered. The analysis of the obtained theoretical results is performed. Conclusions. On the axis at the beginning of the active zone, the formation of a return flow with significant negative velocities is characteristic. This leads to the formation of a recirculation region, the mass exchange between which and the external flow is absent. Cascades of concentric vortexes of such high intensity that are not found in streams of a different nature are generated in the active zone. Calculation formulas include exp (-λ2x/Re) exponent multiplied by Reynolds number in degree b = 0 or b = -1, therefore increasing Reynolds number when b = 0 leads to proportional transfer of arbitrary characteristic counter-vortex flow down the pipe; and at b = -1, the bias of characteristic is accompanied by a proportional decrease in its scale.


Author(s):  
Guillermo E. Ovando ◽  
Alberto Beltran ◽  
Sandy L. Ovando

Fluid dynamics in a two-dimensional rectangular cavity with vertical oscillatory walls out of phase was studied numerically. The Navier-Stokes equations were solved using the finite element method. We analyzed the behaviour of the velocity fields, the vorticity fields and we also obtained the streaklines of the fluid at the bottom left corner of the domain for one and two cycles, which is associated with the mixing of the fluid. The analysis was carried out for three different Reynolds numbers of 50, 500 and 1000 with constant displacement amplitude of the moving boundaries of 0.2. For this range of parameters the flow is characterized by two kind of symmetries. We found that for lower Reynolds number there is a good local mixing given by cell structures and the smooth behavior of the fluid inside the cavity; however for higher Reynolds number these structures disappear due to the fluid near the vertical walls impinges against the corner of the cavity, then this fluid is dispersed through the whole cavity during the cycle, increasing the global mixing of the fluid.


This paper concerns the two-dimensional motion of a viscous liquid down a perturbed inclined plane under the influence of gravity, and the main goal is the prediction of the surface height as the fluid flows over the perturbations. The specific perturbations chosen for the present study were two humps stretching laterally across an otherwise uniform plane, with the flow being confined in the lateral direction by the walls of a channel. Theoretical predictions of the flow have been obtained by finite-element approximations to the Navier-Stokes equations and also by a variety of lubrication approximations. The predictions from the various models are compared with experimental measurements of the free-surface profiles. The principal aim of this study is the establishment and assessment of certain numerical and asymptotic models for the description of a class of free-surface flows, exemplified by the particular case of flow over a perturbed inclined plane. The laboratory experiments were made over a range of flow rates such that the Reynolds number, based on the volume flux per unit width and the kinematical viscosity of the fluid, ranged between 0.369 and 36.6. It was found that, at the smaller Reynolds numbers, a standard lubrication approximation provided a very good representation of the experimental measurements but, as the flow rate was increased, the standard model did not capture several important features of the flow. On the other hand, a lubrication approximation allowing for surface tension and inertial effects expanded the range of applicability of the basic theory by almost an order of magnitude, up to Reynolds numbers approaching 10. At larger flow rates, numerical solutions to the full equations of motion provided a description of the experimental results to within about 4% , up to a Reynolds number of 25, beyond which we were unable to obtain numerical solutions. It is not known why numerical solutions were not possible at larger flow rates, but it is possible that there is a bifurcation of the Navier-Stokes equations to a branch of unsteady motions near a Reynolds number of 25.


1987 ◽  
Vol 109 (3) ◽  
pp. 255-261 ◽  
Author(s):  
M. E. Ralph

Solutions of the Navier-Stokes equations for steady axisymmetric flows in tubes with sinusoidal walls were obtained numerically, for Reynolds numbers (based on the tube radius and mean velocity at a constriction) up to 500, and for varying depth and wavelength of the wall perturbations. Results for the highest Reynolds numbers showed features suggestive of the boundary layer theory of Smith [23]. In the other Reynolds number limit, it has been found that creeping flow solutions can exhibit flow reversal if the perturbation depth is large enough. Experimentally measured pressure drops for a particular tube geometry were in agreement with computed predictions up to a Reynolds number of about 300, where transitional effects began to disturb the experiments. The dimensionless mean pressure gradient was found to decrease with increasing Reynolds number, although the rate of decrease was less rapid than in a straight-walled tube. Numerical results showed that the mean pressure gradient decreases as both the perturbation wavelength and depth increase, with the higher Reynolds number flows tending to be more influenced by the wavelength and the lower Reynolds number flows more affected by the depth.


Author(s):  
Shafqat Ali ◽  
Saddam Hijazi ◽  
Sokratia Georgaka ◽  
Francesco Ballarin ◽  
Giovanni Stabile ◽  
...  

We present different strategies to be able to increase Reynolds number in Reduced Order Methods (ROMs), from laminar to turbulent flows, in the context of the incompressible parametrised Navier-Stokes equations. The proposed methodologies are based on different full order discretisation techniques: the finite element method and the finite volume method. For what concerns finite element full order discretisations which in this work aim to be used from low to moderate Reynolds numbers the


Sign in / Sign up

Export Citation Format

Share Document