Stability and transition of stratified natural convection flow in open cavities

2001 ◽  
Vol 445 ◽  
pp. 285-303 ◽  
Author(s):  
A. JAVAM ◽  
S. W. ARMFIELD

In this study we have investigated the behaviour of natural convection flow in open cavities, with both homogeneous and thermally stratified ambient, using direct numerical simulation. The cavity is insulated at the top and bottom boundaries, heated from the left-hand side boundary and open at the right-hand side. A wide range of Rayleigh numbers were considered (5 × 106 to 1 × 1010) with Pr = 0.7 for all cases. It was found that the homogeneous flow is steady for all Rayleigh numbers considered, whereas the stratified flow with a high enough Rayleigh number exhibits low- and high-frequency signals of the same type as are observed for closed cavity flow. The thermal boundary layer is examined in detail and it is shown that both low- and high-frequency signals are located predominantly in the upper region of the heated plate and are associated with a reverse-S-flow formed by the boundary layer exit jet interacting with the stratified interior. The low-frequency signal is associated with standing waves in the boundary layer, whereas the high-frequency signal is associated with travelling waves. The high-frequency signal occurs initially as a harmonic of the base low-frequency signal. A corner jet with the same inlet characteristics as the natural convection boundary layer exit jet is also examined and shown to exhibit a similar bifurcation, but with the low frequency always dominant. It is suggested that the generation mechanism for the bifurcation of the natural convection flow is the same as that for the corner jet.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongju Chen ◽  
Shuai Zhou ◽  
Lihua Dong ◽  
Jinwei Fan

This paper presents a new identification method to identify the main errors of the machine tool in time-frequency domain. The low- and high-frequency signals of the workpiece surface are decomposed based on the Daubechies wavelet transform. With power spectral density analysis, the main features of the high-frequency signal corresponding to the imbalance of the spindle system are extracted from the surface topography of the workpiece in the frequency domain. With the cross-correlation analysis method, the relationship between the guideway error of the machine tool and the low-frequency signal of the surface topography is calculated in the time domain.


1988 ◽  
Vol 110 (1) ◽  
pp. 116-125 ◽  
Author(s):  
P. A. Litsek ◽  
A. Bejan

The natural convection flow and heat transfer between two enclosures that communicate through a vertical opening is studied by considering the evolution of an enclosed fluid in which the left half is originally at a different temperature than the right half. Numerical experiments show that at sufficiently high Rayleigh numbers the ensuing flow is oscillatory. This and other features are anticipated on the basis of scale analysis. The time scales of the oscillation, the establishment of thermal stratification, and eventual thermal equilibrium are determined and tested numerically. At sufficiently high Rayleigh numbers the heat transfer between the communicating zones is by convection, in accordance with the constant-Stanton-number trend pointed out by Jones and Otis (1986). The range covered by the numerical experiments is 102 < Ra < 107, 0.71 < Pr < 100, and 0.25 < H/L < 1.


2014 ◽  
Vol 989-994 ◽  
pp. 3973-3976
Author(s):  
Yi Fan Ma ◽  
Shu Gui Liu

Image edge detection is easily affected by noise. Wavelet algorithm can divide the image into low frequency and high frequency. By the processing of high frequency signal and the reconstruction of wavelet coefficients, the purpose of removing noise can be achieved. In the environment of VC++6.0, an image de-noising algorithm based on the wavelet combined with the Canny edge detection is proposed, which obtains a good result. The above algorithms are implemented based on OpenCV, which is more efficient, providing the conditions for subsequent image analysis and recognition. Experiments are carried out and the results show that the proposed algorithm is available and has a good performance.


2008 ◽  
Author(s):  
Esam M. Alawadhi

Natural convection flow in a cube with a heated strip is solved numerically. The heated strip is attached horizontally to the front wall and maintained at high temperature, while the entire opposite wall is maintained at low temperature. The heated strip simulates an array of electronic chips The Rayleigh numbers of 104, 105, and 106 are considered in the analysis and the heated strip is horizontally attached to the wall. The results indicate that the heat transfer strongly depends on the position of the heated strip. The maximum Nusselt number can be achieved if the heater is placed at the lower half of the vertical wall. Increasing the Rayleigh number significantly promotes heat transfer in the enclosure. Flow streamlines and temperature contours are presented, and the results are validated against published works.


1994 ◽  
Vol 116 (2) ◽  
pp. 400-408 ◽  
Author(s):  
R. A. W. M. Henkes ◽  
C. J. Hoogendoorn

By numerically solving the Reynolds equations for air and water in a square cavity, with differentially heated vertical walls, at Rayleigh numbers up to 1020 the scalings of the turbulent natural convection flow are derived. Turbulence is modeled by the standard k–ε model and by the low-Reynolds-number k–ε models of Chien and of Jones and Launder. Both the scalings with respect to the Rayleigh number (based on the cavity size H) and with respect to the local height (y/H) are considered. The scalings are derived for the inner layer, outer layer, and core region. The Rayleigh number scalings are almost the same as the scalings for the natural convection boundary layer along a hot vertical plate. The scalings found are almost independent of the k–ε model used.


2013 ◽  
Vol 32 ◽  
pp. 61-73
Author(s):  
M Obayedullah ◽  
M M K Chowdhury

Natural convection flow in a rectangular cavity containing internally heated and electrically conducting fluid has been investigated numerically. The bottom wall of the cavity is linearly heated whereas the top wall is well insulated. The left and right vertical walls are maintained at constant hot and cold temperature respectively.Results have been obtained with respect to Rayleigh numbers and Hartmann numbers. Flow and temperature fields for these cases have been studied. Average Nusselt numbers at hot, cold and linearly heated bottom wall have been calculated. It is found that the temperature, fluid flow and heat transfer strongly depend on internal and external Rayleigh numbers and Hartmann numbers. DOI: http://dx.doi.org/10.3329/ganit.v32i0.13648 GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 32 (2012) 61-73    


2014 ◽  
Vol 28 (16) ◽  
pp. 1450103 ◽  
Author(s):  
Canjun Wang ◽  
Keli Yang ◽  
Shixian Qu

The effects of time delay on the vibrational resonance (VR) in a discrete neuron system with a low-frequency signal and a high-frequency signal are investigated by numerical simulations. The results show that there exists a delay time that optimizes the phase synchronization between the low-frequency input signal and the output signal. VR is induced by the time delay. Furthermore, the time delay can improve the response to a low-frequency input signal. Therefore, the time delay plays a constructive role in the transmission of a low-frequency signal by inducing and enhancing VR.


2011 ◽  
Vol 08 (03) ◽  
pp. 611-631 ◽  
Author(s):  
P. TALEBIZADEH ◽  
M. A. MOGHIMI ◽  
A. KIMIAEIFAR ◽  
M. AMERI

In this paper, the boundary-layer natural convection flow on a permeable vertical plate with thermal radiation and mass transfer is studied when the plate moves in its own plane. A uniform temperature with uniform species concentration at the plate is affected and the fluid is considered to be a gray, absorbing–emitting. A viscous flow model is presented using boundary-layer theory comprising the momentum, energy, and concentration equations, which is solved analytically by means of an excellent method called homotopy analysis method (HAM). First, a comparison between HAM results and those obtained by means of a higher-order numerical method, namely differential quadrature method (DQM), is done. Close agreement of two sets of results indicates the accuracy of the HAM. The velocity, temperature, and concentration distributions are displayed graphically, and a parametric study is performed in which the effect of various parameters on the skin friction, the local Nusselt number (Nn), and the local Sherwood number (Mu) are investigated.


2014 ◽  
Vol 543-547 ◽  
pp. 514-517
Author(s):  
Hong Bo Li ◽  
Lin Niu ◽  
Nan Nan Gao ◽  
Jie Zhan ◽  
Pei Li ◽  
...  

By analyzing the two lightning accidents happening to a 500kV substation situated in the lightning-prone northeastern Guangdong Province, I conclude as follows, there should be some problem in the equipotential earthing of the secondary system of this substation. Specifically, the existing potential difference in the secondary equipment gave rise to the meltdown of it which finally caused the accident. In the context,I build the one-point earthing parallel system simulation model according to ATP graphic pretreatment program, then by using slope-ramp simulation I study the lightning current which leaked into the grounding grids of the substation.In conclusion, the application of high frequency signal mixed low frequency signal earth system in the secondary system and the equipotential bonding is key to preventing accidents.


Sign in / Sign up

Export Citation Format

Share Document