The linear stability of flat Stokes layers

2002 ◽  
Vol 464 ◽  
pp. 393-410 ◽  
Author(s):  
P. J. BLENNERHASSETT ◽  
ANDREW P. BASSOM

The linear stability of the Stokes layer generated by an oscillating flat plate is investigated using Floquet theory. The results obtained include the behaviour of the growth rate of the disturbances, part of the corresponding neutral curve and the structure of neutrally stable disturbances. Previously unknown properties of the growth rate cause the neutral curve to have a complicated geometry: the majority of the marginal curve is defined by waves propagating relative to the basic flow and the curve is smooth in character, but for certain very narrow bands of wavenumbers it was found that stationary modes are the first to become unstable. This phenomenon has the consequence that the underlying smooth neutral curve is punctuated by thin finger-like features. The structure of the eigenfunctions showed that the neutrally stable disturbances tend to grow most rapidly just after the wall velocity passes through zero.

2010 ◽  
Vol 662 ◽  
pp. 320-328 ◽  
Author(s):  
CHRISTIAN THOMAS ◽  
ANDREW P. BASSOM ◽  
CHRISTOPHER DAVIES

The effects of a uniform axial magnetic field directed towards an oscillating wall in a semi-infinite viscous fluid (or Stokes layer) is investigated. The linear stability and disturbance characteristics are determined using both Floquet theory and via direct numerical simulations. Neutral stability curves and critical parameters for instability are presented for a range of magnetic field strengths. Results indicate that a magnetic field directed towards the boundary wall is stabilizing, which is consistent with that found in many steady flows.


2019 ◽  
Vol 49 (12) ◽  
pp. 3199-3219 ◽  
Author(s):  
Bowen Zhao ◽  
Emma Chieusse-Gérard ◽  
Glenn Flierl

AbstractThe effects of topography on the linear stability of both barotropic vortices and two-layer, baroclinic vortices are examined by considering cylindrical topography and vortices with stepwise relative vorticity profiles in the quasigeostrophic approximation. Four vortex configurations are considered, classified by the number of relative vorticity steps in the horizontal and the number of layers in the vertical: barotropic one-step vortex (Rankine vortex), barotropic two-step vortex, and their two-layer, baroclinic counterparts with the vorticity steps in the upper layer. In the barotropic calculation, the vortex is destabilized by topography having an oppositely signed potential vorticity jump while stabilized by topography of same-signed jump, that is, anticyclones are destabilized by seamounts while stabilized by depressions. Further, topography of appropriate sign and magnitude can excite a mode-1 instability for a two-step vortex, especially relevant for topographic encounters of an otherwise stable vortex. The baroclinic calculation is in general consistent with the barotropic calculation except that the growth rate weakens and, for a two-step vortex, becomes less sensitive to topography (sign and magnitude) as baroclinicity increases. The smaller growth rate for a baroclinic vortex is consistent with previous findings that vortices with sufficient baroclinic structure could cross the topography relatively easily. Nonlinear contour dynamics simulations are conducted to confirm the linear stability analysis and to describe the subsequent evolution.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 212
Author(s):  
Miles Owen ◽  
Abdelkader Frendi

The results from a temporal linear stability analysis of a subsonic boundary layer over a flat plate with a straight and wavy leading edge are presented in this paper for a swept and un-swept plate. For the wavy leading-edge case, an extensive study on the effects of the amplitude and wavelength of the waviness was performed. Our results show that the wavy leading edge increases the critical Reynolds number for both swept and un-swept plates. For the un-swept plate, increasing the leading-edge amplitude increased the critical Reynolds number, while changing the leading-edge wavelength had no effect on the mean flow and hence the flow stability. For the swept plate, a local analysis at the leading-edge peak showed that increasing the leading-edge amplitude increased the critical Reynolds number asymptotically, while the leading-edge wavelength required optimization. A global analysis was subsequently performed across the span of the swept plate, where smaller leading-edge wavelengths produced relatively constant critical Reynolds number profiles that were larger than those of the straight leading edge, while larger leading-edge wavelengths produced oscillating critical Reynolds number profiles. It was also found that the most amplified wavenumber was not affected by the wavy leading-edge geometry and hence independent of the waviness.


2013 ◽  
Vol 721 ◽  
pp. 268-294 ◽  
Author(s):  
L. Talon ◽  
N. Goyal ◽  
E. Meiburg

AbstractA computational investigation of variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells is presented. As a first step, two-dimensional base states are obtained by means of simulations of the Stokes equations, which are nonlinear due to the dependence of the viscosity on the local concentration. Here, the vertical position of the displacement front is seen to reach a quasisteady equilibrium value, reflecting a balance between viscous and gravitational forces. These base states allow for two instability modes: first, there is the familiar tip instability driven by the unfavourable viscosity contrast of the displacement, which is modulated by the presence of density variations in the gravitational field; second, a gravitational instability occurs at the unstably stratified horizontal interface along the side of the finger. Both of these instability modes are investigated by means of a linear stability analysis. The gravitational mode along the side of the finger is characterized by a wavelength of about one half to one full gap width. It becomes more unstable as the gravity parameter increases, even though the interface is shifted closer to the wall. The growth rate is largest far behind the finger tip, where the interface is both thicker, and located closer to the wall, than near the finger tip. The competing influences of interface thickness and wall proximity are clarified by means of a parametric stability analysis. The tip instability mode represents a gravity-modulated version of the neutrally buoyant mode. The analysis shows that in the presence of density stratification its growth rate increases, while the dominant wavelength decreases. This overall destabilizing effect of gravity is due to the additional terms appearing in the stability equations, which outweigh the stabilizing effects of gravity onto the base state.


2015 ◽  
Vol 778 ◽  
pp. 120-132 ◽  
Author(s):  
Mario Weder ◽  
Michael Gloor ◽  
Leonhard Kleiser

We present a decomposition of the temporal growth rate ${\it\omega}_{i}$ which characterises the evolution of wave-like disturbances in linear stability theory for compressible flows. The decomposition is based on the disturbance energy balance by Chu (Acta Mech., vol. 1 (3), 1965, pp. 215–234) and provides terms for production, dissipation and flux of energy as components of ${\it\omega}_{i}$. The inclusion of flux terms makes our formulation applicable to unconfined flows and flows with permeable or vibrating boundaries. The decomposition sheds light on the fundamental mechanisms determining temporal growth or decay of disturbances. The additional insights gained by the proposed approach are demonstrated by an investigation of two model flows, namely compressible Couette flow and a plane compressible jet.


1989 ◽  
Vol 202 ◽  
pp. 443-465 ◽  
Author(s):  
Arne J. Pearlstein ◽  
Rodney M. Harris ◽  
Guillermo Terrones

The onset of instability is investigated in a triply diffusive fluid layer in which the density depends on three stratifying agencies having different diffusivities. It is found that, in some cases, three critical values of the Rayleigh number are required to specify the linear stability criteria. As in the case of another problem requiring three Rayleigh numbers for the specification of linear stability criteria (the rotating doubly diffusive case studied by Pearlstein 1981), the cause is traceable to the existence of disconnected oscillatory neutral curves. The multivalued nature of the stability boundaries is considerably more interesting and complicated than in the previous case, however, owing to the existence of heart-shaped oscillatory neutral curves. An interesting consequence of the heart shape is the possibility of ‘quasi-periodic bifurcation’ to convection from the motionless state when the twin maxima of the heart-shaped oscillatory neutral curve lie below the minimum of the stationary neutral curve. In this case, there are two distinct disturbances, with (generally) incommensurable values of the frequency and wavenumber, that simultaneously become unstable at the same Rayleigh number. This work complements the earlier efforts of Griffiths (1979a), who found none of the interesting results obtained herein.


2010 ◽  
Vol 656 ◽  
pp. 417-447 ◽  
Author(s):  
ANIRBAN GUHA ◽  
IAN A. FRIGAARD

We present a detailed study of the linear stability of the plane Couette–Poiseuille flow in the presence of a crossflow. The base flow is characterized by the crossflow Reynolds number Rinj and the dimensionless wall velocity k. Squire's transformation may be applied to the linear stability equations and we therefore consider two-dimensional (spanwise-independent) perturbations. Corresponding to each dimensionless wall velocity, k ∈ [0, 1], two ranges of Rinj exist where unconditional stability is observed. In the lower range of Rinj, for modest k we have a stabilization of long wavelengths leading to a cutoff Rinj. This lower cutoff results from skewing of the velocity profile away from a Poiseuille profile, shifting of the critical layers and the gradual decrease of energy production. Crossflow stabilization and Couette stabilization appear to act via very similar mechanisms in this range, leading to the potential for a robust compensatory design of flow stabilization using either mechanism. As Rinj is increased, we see first destabilization and then stabilization at very large Rinj. The instability is again a long-wavelength mechanism. An analysis of the eigenspectrum suggests the cause of instability is due to resonant interactions of Tollmien–Schlichting waves. A linear energy analysis reveals that in this range the Reynolds stress becomes amplified, the critical layer is irrelevant and viscous dissipation is completely dominated by the energy production/negation, which approximately balances at criticality. The stabilization at very large Rinj appears to be due to decay in energy production, which diminishes like Rinj−1. Our study is limited to two-dimensional, spanwise-independent perturbations.


1971 ◽  
Vol 48 (2) ◽  
pp. 365-384 ◽  
Author(s):  
C. F. Chen ◽  
R. P. Kirchner

The stability of the flow induced by an impulsively started inner cylinder in a Couette flow apparatus is investigated by using a linear stability analysis. Two approaches are taken; one is the treatment as an initial-value problem in which the time evolution of the initially distributed small random perturbations of given wavelength is monitored by numerically integrating the unsteady perturbation equations. The other is the quasi-steady approach, in which the stability of the instantaneous velocity profile of the basic flow is analyzed. With the quasi-steady approach, two stability criteria are investigated; one is the standard zero perturbation growth rate definition of stability, and the other is the momentary stability criterion in which the evolution of the basic flow velocity field is partially taken into account. In the initial-value problem approach, the predicted critical wavelengths agree remarkably well with those found experimentally. The kinetic energy of the perturbations decreases initially, reaches a minimum, then grows exponentially. By comparing with the experimental results, it may be concluded that when the perturbation kinetic energy has grown a thousand-fold, the secondary flow pattern is clearly visible. The time of intrinsic instability (the time at which perturbations first tend to grow) is about ¼ of the time required for a thousandfold increase, when the instability disks are clearly observable. With the quasi-steady approach, the critical times for marginal stability are comparable to those found using the initial-value problem approach. The predicted critical wavelengths, however, are about 1½ to 2 times larger than those observed. Both of these points are in agreement with the findings of Mahler, Schechter & Wissler (1968) treating the stability of a fluid layer with time-dependent density gradients. The zero growth rate and the momentary stability criteria give approximately the same results.


2017 ◽  
Vol 814 ◽  
pp. 24-41 ◽  
Author(s):  
D. V. Lyubimov ◽  
G. L. Khilko ◽  
A. O. Ivantsov ◽  
T. P. Lyubimova

The effect of viscosity on the longwave Kelvin–Helmholtz instability of two immiscible incompressible fluids under horizontal vibrations is considered. The linear stability boundaries are found analytically using series expansion in terms of small wavenumber. The values of parameters, at which a transition from the longwave to finite-wavelength instability takes place, are determined. It has been shown that for high-frequency vibrations a viscous dissipation has just a weak destabilizing effect. At vibrations of moderate frequencies, destabilization is more significant, especially in the systems with large viscosity contrast. In contrast to that, at low frequencies the viscosity stabilizes the basic flow by suppressing the longwave perturbations.


The fully developed laminar flow of air over water confined between two infinite parallel plates was used to study nonlinear effects in the generation of surface waves. A linear stability analysis of the basic flow was made and the conditions at which small amplitude surface waves first begin to grow were determined. Then, following Stewartson & Stuart (1971), the nonlinear stability of the flow was examined and the usual parabolic equation with cubic nonlinearity obtained for the amplitude of the disturbances. The calculation of the linear stability characteristics and the coefficients appearing in the amplitude equation was a lengthy computational task, with most interest centred on the coefficient of the nonlinear terms in the amplitude equation. In two profiles, used as crude models of a boundary layer flow of air over water, the calculations indicated that, over a range of parameters, the non-linear effects would reduce the growth rate of the surface waves and hence lead to equilibrium amplitude waves.


Sign in / Sign up

Export Citation Format

Share Document