Hydraulic control of homogeneous shear flows

2003 ◽  
Vol 475 ◽  
pp. 163-172 ◽  
Author(s):  
CHRIS GARRETT ◽  
FRANK GERDES

If a shear flow of a homogeneous fluid preserves the shape of its velocity profile, a standard formula for the condition for hydraulic control suggests that this is achieved when the depth-averaged flow speed is less than (gh)1/2. On the other hand, shallow-water waves have a speed relative to the mean flow of more than (gh)1/2, suggesting that information could propagate upstream. This apparent paradox is resolved by showing that the internal stress required to maintain a constant velocity profile depends on flow derivatives along the channel, thus altering the wave speed without introducing damping. By contrast, an inviscid shear flow does not maintain the same profile shape, but it can be shown that long waves are stationary at a position of hydraulic control.

1971 ◽  
Vol 46 (1) ◽  
pp. 43-64 ◽  
Author(s):  
J. H. Gerrard

Experiments were made on a pulsating water flow at a mean flow Reynolds number of 3770 in a cylindrical tube of diameter 3·81 cm. Pulsations were produced by a piston oscillating in simple harmonic motion with a period of 12 s. Turbulence was made visible by means of a sheet of dye produced by electrolysis from a fine wire stretched across a diameter. The sheet of dye is contorted by the turbulent eddies, and ciné-photography was used to find the velocity of convection which was shown to be the flow speed except in certain circumstances which are discussed. By subtracting the mean flow velocity profile the profile of the component of the motion oscillating at the imposed frequency was determined.The Reynolds number of these experiments lies in the turbulent transition range, so that large effects of laminarization are observed. In the turbulent phase, the velocity profile was found to possess a central plateau as does the laminar oscillating profile. The level and radial extent of this were little different from the laminar ones. Near to the wall, the turbulent oscillating profile is well represented by the mean velocity power law relationship, u/U ∝ (y/a)1/n. In the laminarized phase, the turbulent intensity is considerably reduced at this Reynolds number. The velocity profile for the whole flow (mean plus oscillating) relaxes towards the laminar profile. Laminarization contributes appreciably to the oscillating component.Extrapolation of the results to higher Reynolds numbers and different frequencies of oscillation is suggested.


1956 ◽  
Vol 1 (5) ◽  
pp. 521-539 ◽  
Author(s):  
W. V. R. Malkus

In this paper the spatial variations and spectral structure of steady-state turbulent shear flow in channels are investigated without the introduction of empirical parameters. This is made possible by the assumption that the non-linear momentum transport has only stabilizing effects on the mean field of flow. Two constraints on the possible momentum transport are drawn from this assumption: first, that the mean flow will be statistically stable if an Orr-Sommerfeld type equation is satisfied by fluctuations of the mean; second, that the smallest scale of motion that can be present in the spectrum of the momentum transport is the scale of the marginally stable fluctuations of the mean. Within these two constraints, and for a given mass transport, an upper limit is sought for the rate of dissipation of potential energy into heat. Solutions of the stability equation depend upon the shape of the mean velocity profile. In turn, the mean velocity profile depends upon the spatial spectrum of the momentum transport. A variational technique is used to determine that momentum transport spectrum which is both marginally stable and produces a maximum dissipation rate. The resulting spectrum determines the velocity profile and its dependence on the boundary conditions. Past experimental work has disclosed laminar, ‘transitional’, logarithmic and parabolic regions of the velocity profile. Several experimental laws and their accompanying constants relate the extent of these regions to the boundary conditions. The theoretical profile contains each feature and law that is observed. First approximations to the constants are found, and give, in particular, a value for the logarithmic slope (von Kármán's constant) which is within the experimental error. However, the theoretical boundary constant is smaller than the observed value. Turbulent channel flow seems to achieve the extreme state found here, but a more decisive quantitative comparison of theory and experiment requires improvement in the solutions of the classical laminar stability problem.


1967 ◽  
Vol 27 (1) ◽  
pp. 131-144 ◽  
Author(s):  
O. M. Phillips

A mechanism is proposed for the manner in which the turbulent components support Reynolds stress in turbulent shear flow. This involves a generalization of Miles's mechanism in which each of the turbulent components interacts with the mean flow to produce an increment of Reynolds stress at the ‘matched layer’ of that particular component. The summation over all the turbulent components leads to an expression for the gradient of the Reynolds stress τ(z) in the turbulence\[ \frac{d\tau}{dz} = {\cal A}\Theta\overline{w^2}\frac{d^2U}{dz^2}, \]where${\cal A}$is a number, Θ the convected integral time scale of thew-velocity fluctuations andU(z) the mean velocity profile. This is consistent with a number of experimental results, and measurements on the mixing layer of a jet indicate thatA= 0·24 in this case. In other flows, it would be expected to be of the same order, though its precise value may vary somewhat from one to another.


1978 ◽  
Vol 1 (16) ◽  
pp. 30 ◽  
Author(s):  
D.H. Peregrine ◽  
I.A. Svendsen

On gently sloping beaches, almost all water waves break. After the initial breaking the water motion usually appears quite chaotic. However, for a moderate time, for example two or three times the descent time of the "plunge" in a plunging breaker, the flow can be relatively well organised despite the superficial view which is largely of spray and bubbles. If waves continue to break the breaking motion, or "white water" soon becomes fully turbulent and the mean motions become quasisteady. A reasonable definition of a quasi-steady wave is one which changes little during the time a water particle takes to pass through it. We exclude water particles which may become trapped in a surface roller and surf along with the wave. At this stage in its development a wave on a beach may be described as a spilling breaker or as a bore. In fact, there is a range of these waves from those with a little white water at the crest to examples where the whole front of the wave is fully turbulent. In investigating the properties of such waves it is desirable to start by looking at the whole range of related motions. The most obvious extension is to the hydraulic jump; since, in the simplest view, it is equivalent to a bore but in a frame of reference moving with the wave. It is also an example where the mean flow is steady rather than quasisteady.


2010 ◽  
Vol 660 ◽  
pp. 221-239 ◽  
Author(s):  
W. R. C. PHILLIPS ◽  
A. DAI ◽  
K. K. TJAN

The Lagrangian drift in anO(ϵ) monochromatic wave field on a shear flow, whose characteristic velocity isO(ϵ) smaller than the phase velocity of the waves, is considered. It is found that although shear has only a minor influence on drift in deep-water waves, its influence becomes increasingly important as the depth decreases, to the point that it plays a significant role in shallow-water waves. Details of the shear flow likewise affect the drift. Because of this, two temporal cases common in coastal waters are studied, viz. stress-induced shear, as would arise were the boundary layer wind-driven, and a current-driven shear, as would arise from coastal currents. In the former, the magnitude of the drift (maximum minus minimum) in shallow-water waves is increased significantly above its counterpart, viz. the Stokes drift, in like waves in otherwise quiescent surroundings. In the latter, on the other hand, the magnitude decreases. However, while the drift at the free surface is always oriented in the direction of wave propagation in stress-driven shear, this is not always the case in current-driven shear, especially in long waves as the boundary layer grows to fill the layer. This latter finding is of particular interest vis-à-vis Langmuir circulations, which arise through an instability that requires differential drift and shear of the same sign. This means that while Langmuir circulations form near the surface and grow downwards (top down), perhaps to fill the layer, in stress-driven shear, their counterparts in current-driven flows grow from the sea floor upwards (bottom up) but can never fill the layer.


2002 ◽  
Vol 10 (04) ◽  
pp. 407-419
Author(s):  
SEAN F. WU

The stabilities of an elastic plate clamped on an infinite, rigid baffle subject to any time dependent force excitation in the presence of mean flow are examined. The mechanisms that can cause plate flexural vibrations to be absolute unstable when the mean flow speed exceeds a critical value are revealed. Results show that the instabilities of an elastic plate are mainly caused by an added stiffness due to acoustic radiation in mean flow, but controlled by the structural nonlinearities. This added stiffness is shown to be negative and increase quadratically with the mean flow speed. Hence, as the mean flow speed approaches a critical value, the added stiffness may null the overall stiffness of the plate, leading to an unstable condition. Note that without the inclusion of the structural nonlinearities, the plate has only one equilibrium position, namely, its undeformed flat position. Under this condition, the amplitude of plate flexural vibration would grow exponentially in time everywhere, known as absolute instability. With the inclusion of structural nonlinearities, the plate may possess multiple equilibrium positions. When the mean flow speed exceeds the critical values, the plate may be unstable and jump from one equilibrium position to another. Since this jumping is random, the plate flexural vibration may seem chaotic.


2017 ◽  
Vol 816 ◽  
pp. 352-380 ◽  
Author(s):  
Jin-Han Xie ◽  
Jacques Vanneste

Mountain-generated inertia–gravity waves (IGWs) affect the dynamics of both the atmosphere and the ocean through the mean force they exert as they interact with the flow. A key to this interaction is the presence of critical-level singularities or, when planetary rotation is taken into account, inertial-level singularities, where the Doppler-shifted wave frequency matches the local Coriolis frequency. We examine the role of the latter singularities by studying the steady wavepacket generated by a multiscale mountain in a rotating linear shear flow at low Rossby number. Using a combination of Wentzel–Kramers–Brillouin (WKB) and saddle-point approximations, we provide an explicit description of the form of the wavepacket, of the mean forcing it induces and of the mean-flow response. We identify two distinguished regimes of wave propagation: Regime I applies far enough from a dominant inertial level for the standard ray-tracing approximation to be valid; Regime II applies to a thin region where the wavepacket structure is controlled by the inertial-level singularities. The wave–mean-flow interaction is governed by the change in Eliassen–Palm (or pseudomomentum) flux. This change is localised in a thin inertial layer where the wavepacket takes a limiting form of that found in Regime II. We solve a quasi-geostrophic potential-vorticity equation forced by the divergence of the Eliassen–Palm flux to compute the wave-induced mean flow. Our results, obtained in an inviscid limit, show that the wavepacket reaches a large-but-finite distance downstream of the mountain (specifically, a distance of order$(k_{\ast }\unicode[STIX]{x1D6E5})^{1/2}\unicode[STIX]{x1D6E5}$, where$k_{\ast }^{-1}$and$\unicode[STIX]{x1D6E5}$measure the wave and envelope scales of the mountain) and extends horizontally over a similar scale.


2009 ◽  
Vol 39 (9) ◽  
pp. 2373-2381 ◽  
Author(s):  
S. A. Thorpe ◽  
Zhiyu Liu

Abstract Some naturally occurring, continually forced, turbulent, stably stratified, mean shear flows are in a state close to that in which their stability changes, usually from being dynamically unstable to being stable: the time-averaged flows that are observed are in a state of marginal instability. By “marginal instability” the authors mean that a small fractional increase in the gradient Richardson number Ri of the mean flow produced by reducing the velocity and, hence, shear is sufficient to stabilize the flow: the increase makes Rimin, the minimum Ri in the flow, equal to Ric, the critical value of this minimum Richardson number. The value of Ric is determined by solving the Taylor–Goldstein equation using the observed buoyancy frequency and the modified velocity. Stability is quantified in terms of a factor, Φ, such that multiplying the flow speed by (1 + Φ) is just sufficient to stabilize it, or that Ric = Rimin/(1 + Φ)2. The hypothesis that stably stratified boundary layer flows are in a marginal state with Φ < 0 and with |Φ| small compared to unity is examined. Some dense water cascades are marginally unstable with small and negative Φ and with Ric substantially less than ¼. The mean flow in a mixed layer driven by wind stress on the water surface is, however, found to be relatively unstable, providing a counterexample that refutes the hypothesis. In several naturally occurring flows, the time for exponential growth of disturbances (the inverse of the maximum growth rate) is approximately equal to the average buoyancy period observed in the turbulent region.


1972 ◽  
Vol 55 (4) ◽  
pp. 719-735 ◽  
Author(s):  
A. A. Townsend

Linearized equations for the mean flow and for the turbulent stresses over sinusoidal, travelling surface waves are derived using assumptions similar to those used by Bradshaw, Ferriss & Atwell (1967) to compute boundary-layer development. With the assumptions, the effects on the local turbulent stresses of advectal, vertical transport, generation and dissipation of turbulent energy can be assessed, and solutions of the equations are expected to resemble closely real flows with the same conditions. The calculated distributions of surface pressure indicate rates of wave growth (expressed as fractional energy gain during a radian advance of phase) of about 15(ρa/ρw) (τo/c2), where τo is the surface stress, co the phase velocity and ρa and ρw the densities of air and water, unless the wind velocity at height λ/2π is less than the phase velocity. The rates are considerably less than those measured by Snyder & Cox (1966), by Barnett & Wilkerson (1967) and by Dobson (1971), and arguments are presented to show that the linear approximation fails for wave slopes of order 0.1.


1970 ◽  
Vol 37 (2) ◽  
pp. 488-493 ◽  
Author(s):  
P. S. Virk ◽  
H. S. Mickley ◽  
K. A. Smith

The maximum drag reduction in turbulent pipe flow of dilute polymer solutions is ultimately limited by a unique asymptote described by the experimental correlation: f−1/2=19.0log10(NRef1/2)−32.4 The semilogarithmic mean velocity profile corresponding to and inferred from this ultimate asymptote has a mixing-length constant of 0.085 and shares a trisection (at y+ ∼ 12) with the Newtonian viscous sublayer and law of the wall. Experimental mean velocity profiles taken during drag reduction lie in the region bounded by the inferred ultimate profile and the Newtonian law of the wall. At low drag reductions the experimental profiles are well correlated by an “effective slip” model but this fails progressively with increasing drag reduction. Based on the foregoing a three-zone scheme is proposed to model the mean flow structure during drag reduction. In this the mean velocity profile segments are (a) a viscous sublayer, akin to Newtonian, (b) an interactive zone, characteristic of drag reduction, in which the ultimate profile is followed, and (c) a turbulent core in which the Newtonian mixing-length constant applies. The proposed model is consistent with experimental observations and reduces satisfactorily to the Taylor-Prandtl scheme and the ultimate profile, respectively, at the limits of zero and maximum drag reductions.


Sign in / Sign up

Export Citation Format

Share Document