scholarly journals On the frequency selection of finite-amplitude vortex shedding in the cylinder wake

2002 ◽  
Vol 458 ◽  
pp. 407-417 ◽  
Author(s):  
BENOÎT PIER

In this paper it is shown that the two-dimensional time-periodic vortex shedding régime observed in the cylinder wake at moderate Reynolds numbers may be interpreted as a nonlinear global structure and its naturally selected frequency obtained in the framework of hydrodynamic stability theory. The frequency selection criterion is based on the local absolute frequency curve derived from the unperturbed basic flow fields under the assumption of slow streamwise variations. Although the latter assumption is only approximately fulfilled in the vicinity of the obstacle, the theoretically predicted frequency is in good agreement with direct numerical simulations for Reynolds numbers Re > 100.

2014 ◽  
Vol 1061-1062 ◽  
pp. 974-977
Author(s):  
Shi Hua Liu ◽  
Xian Gang Liu ◽  
Zhi Jian Sun

A skywave radar adaptive frequency selection method based on the preliminary criterion and the weighted criterion is presented. In this method, according to the various operational tasks, the frequency selection criterion is divided into the preliminary criterion and the weighted criterion based on the characteristic of the targets. The adaptive frequency selection of the skywave radar is achieved by the weighted computed of the frequency selection criterion. The feasibility and availability is demonstrated by an example.


1993 ◽  
Vol 115 (2) ◽  
pp. 283-291 ◽  
Author(s):  
Mary S. Hall ◽  
Owen M. Griffin

Vortex shedding resonance or lock-on is observed when a bluff body is placed in an incident mean flow with a superimposed periodic component. Direct numerical simulations of this flow at a Reynolds number of 200 are compared here with experiments that have been conducted by several investigators. The bounds of the lock-on or resonance flow regimes for the computations and experiments are in good agreement. The computed and measured vortex street wavelengths also are in good agreement with experiments at Reynolds numbers from 100 to 2000. Comparison of these computations with experiments shows that both natural, or unforced, and forced vortex street wakes are nondispersive in their wave-like behavior. Recent active control experiments with rotational oscillations of a circular cylinder find this same nondispersive behavior over a three-fold range of frequencies at Reynolds numbers up to 15,000. The vortex shedding and lock-on resulting from the introduction of a periodic inflow component upon the mean flow exhibit a particularly strong resonance between the imposed perturbations and the vortices.


1966 ◽  
Vol 25 (4) ◽  
pp. 683-704 ◽  
Author(s):  
Peter Freymuth

This paper deals with the growth of small disturbances in a separated laminar boundary layer for high Reynolds numbers as a function of the dimensionless flow parameters. Using a hot-wire technique, the experiments show that spatially growing disturbances are only affected by the Strouhal number. Thus the basic equations of the process become relatively simple. The experiments show good agreement with theoretical results obtained by means of hydrodynamic stability theory for spatially growing disturbances.


1989 ◽  
Vol 206 ◽  
pp. 579-627 ◽  
Author(s):  
C. H. K. Williamson

Two fundamental characteristics of the low-Reynolds-number cylinder wake, which have involved considerable debate, are first the existence of discontinuities in the Strouhal-Reynolds number relationship, and secondly the phenomenon of oblique vortex shedding. The present paper shows that both of these characteristics of the wake are directly related to each other, and that both are influenced by the boundary conditions at the ends of the cylinder, even for spans of hundreds of diameters in length. It is found that a Strouhal discontinuity exists, which is not due to any of the previously proposed mechanisms, but instead is caused by a transition from one oblique shedding mode to another oblique mode. This transition is explained by a change from one mode where the central flow over the span matches the end boundary conditions to one where the central flow is unable to match the end conditions. In the latter case, quasi-periodic spectra of the velocity fluctuations appear; these are due to the presence of spanwise cells of different frequency. During periods when vortices in neighbouring cells move out of phase with each other, ‘vortex dislocations’ are observed, and are associated with rather complex vortex linking between the cells. However, by manipulating the end boundary conditions, parallel shedding can be induced, which then results in a completely continuous Strouhal curve. It is also universal in the sense that the oblique-shedding Strouhal data (Sθ) can be collapsed onto the parallel-shedding Strouhal curve (S0) by the transformation, S0 = Sθ/cosθ, where θ is the angle of oblique shedding. Close agreement between measurements in two distinctly different facilities confirms the continuous and universal nature of this Strouhal curve. It is believed that the case of parallel shedding represents truly two-dimensional shedding, and a comparison of Strouhal frequency data is made with several two-dimensional numerical simulations, yielding a large disparity which is not clearly understood. The oblique and parallel modes of vortex shedding are both intrinsic to the flow over a cylinder, and are simply solutions to different problems, because the boundary conditions are different in each case.


2015 ◽  
Vol 3 (2) ◽  
pp. 28-49
Author(s):  
Ridha Alwan Ahmed

       In this paper, the phenomena of vortex shedding from the circular cylinder surface has been studied at several Reynolds Numbers (40≤Re≤ 300).The 2D, unsteady, incompressible, Laminar flow, continuity and Navier Stokes equations have been solved numerically by using CFD Package FLUENT. In this package PISO algorithm is used in the pressure-velocity coupling.        The numerical grid is generated by using Gambit program. The velocity and pressure fields are obtained upstream and downstream of the cylinder at each time and it is also calculated the mean value of drag coefficient and value of lift coefficient .The results showed that the flow is strongly unsteady and unsymmetrical at Re>60. The results have been compared with the available experiments and a good agreement has been found between them


2021 ◽  
Vol 502 (2) ◽  
pp. 2513-2517
Author(s):  
Stavros Akras ◽  
Denise R Gonçalves ◽  
Alvaro Alvarez-Candal ◽  
Claudio B Pereira

ABSTRACT We report the validation of a recently proposed infrared (IR) selection criterion for symbiotic stars (SySts). Spectroscopic data were obtained for seven candidates, selected from the SySt candidates of Akras et al. by employing the new supplementary IR selection criterion for SySts in the VST/OmegaCAM Photometric H-Alpha Survey. Five of them turned out to be genuine SySts after the detection of H α, He ii, and [O iii] emission lines as well as TiO molecular bands. The characteristic O vi Raman-scattered line is also detected in one of these SySts. According to their IR colours and optical spectra, all five newly discovered SySts are classified as S-type. The high rate of true SySts detections of this work demonstrates that the combination of the H α emission and the new IR criterion improves the selection of target lists for follow-up observations by minimizing the number of contaminants and optimizing the observing time.


2005 ◽  
Vol 128 (6) ◽  
pp. 557-563 ◽  
Author(s):  
Paul L. Sears ◽  
Libing Yang

Heat transfer coefficients were measured for a solution of surfactant drag-reducing additive in the entrance region of a uniformly heated horizontal cylindrical pipe with Reynolds numbers from 25,000 to 140,000 and temperatures from 30to70°C. In the absence of circumferential buoyancy effects, the measured Nusselt numbers were found to be in good agreement with theoretical results for laminar flow. Buoyancy effects, manifested as substantially higher Nusselt numbers, were seen in experiments carried out at high heat flux.


2014 ◽  
Vol 493 ◽  
pp. 68-73 ◽  
Author(s):  
Willy Stevanus ◽  
Yi Jiun Peter Lin

The research studies the characteristics of the vertical flow past a finite-length horizontal cylinder at low Reynolds numbers (ReD) from 250 to 1080. The experiments were performed in a vertical closed-loop water tunnel. Flow fields were observed by the particle tracer approach for flow visualization and measured by the Particle Image Velocimetry (P.I.V.) approach for velocity fields. The characteristics of vortex formation in the wake of the finite-length cylinder change at different regions from the tip to the base of it. Near the tip, a pair of vortices in the wake was observed and the size of the vortex increased as the observed section was away from the tip. Around a distance of 3 diameters of the cylinder from its tip, the vortex street in the wake was observed. The characteristics of vortex formation also change with increasing Reynolds numbers. At X/D = -3, a pair of vortices was observed in the wake for ReD = 250, but as the ReD increases the vortex street was observed at the same section. The vortex shedding frequency is analyzed by Fast Fourier Transform (FFT). Experimental results show that the downwash flow affects the vortex shedding frequency even to 5 diameters of the cylinder from its tip. The interaction between the downwash flow and the Von Kármán vortex street in the wake of the cylinder is presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document