scholarly journals Hydrodynamic interactions of spherical particles in suspensions confined between two planar walls

2005 ◽  
Vol 541 (-1) ◽  
pp. 263 ◽  
Author(s):  
S. BHATTACHARYA ◽  
J. BLAWZDZIEWICZ ◽  
E. WAJNRYB
1996 ◽  
Vol 118 (3) ◽  
pp. 287-294 ◽  
Author(s):  
R. Ditchfield ◽  
W. L. Olbricht

Experimental results are reported for the low Reynolds number flow of a suspension of spherical particles through a divergent capillary bifurcation consisting of a straight tube of circular cross-section that splits to form two tubes of equal diameter. The partitioning of particles between the downstream branches of the bifurcation is measured as a function of the partitioning of total volume (particles + suspending fluid) between the branches. Two bifurcation geometries are examined: a symmetric Y-shaped bifurcation and a nonsymmetric T-shaped bifurcation. This experiment focuses on the role of hydrodynamic interactions between particles on the partitioning of particles at the bifurcation. The particle diameter, made dimensionless with respect to the diameter of the branch tubes, ranges from 0.4 to 0.8. Results show that hydrodynamic interactions among the particles are significant at the bifurcation, even for conditions where interactions are unimportant in the straight branches away from the bifurcation. As a result of hydrodynamic interactions among particles at the bifurcation, the partitioning of particles between the branches is affected for particle volume fractions as small as 2 percent. The experimental results show that the effect of particle volume fraction is to diminish the inhomogeneity of particle partitioning at the bifurcation. However, the magnitude of this effect depends strongly on the overall shape of the bifurcation geometry, and, in particular on the angles between the branches.


2002 ◽  
Vol 468 ◽  
pp. 205-237 ◽  
Author(s):  
JASON E. BUTLER ◽  
ERIC S. G. SHAQFEH

We have simulated the dynamics of suspensions of fibres sedimenting in the limit of zero Reynolds number. In these simulations, the dominant inter-particle force arises from hydrodynamic interactions between the rigid, non-Brownian fibres. The simulation algorithm uses slender-body theory to model the linear and rotational velocities of each fibre. To include far-field interactions between the fibres, the line distribution of force on each fibre is approximated by making a Legendre polynomial expansion of the disturbance velocity on the fibre, where only the first two terms of the expansion are retained in the calculation. Thus, the resulting linear force distribution can be specified completely by a centre-of-mass force, a couple, and a stresslet. Short-range interactions between particles are included using a lubrication approximation, and an infinite suspension is simulated by using periodic boundary conditions. Our numerical results confirm that the sedimentation of these non-spherical, orientable particles differs qualitatively from the sedimentation of spherical particles. The simulations demonstrate that an initially homogeneous, settling suspension develops clusters, or streamers, which are particle rich surrounded by clarified fluid. The instability which causes the heterogeneous structure arises solely from hydrodynamic interactions which couple the particle orientation and the sedimentation rate in particle clusters. Depending upon the concentration and aspect ratio, the formation of clusters of particles can enhance the sedimentation rate of the suspension to a value in excess of the maximum settling speed of an isolated particle. The suspension of fibres tends to orient with gravity during the sedimentation process. The average velocities and orientations, as well as their distributions, compare favourably with previous experimental measurements.


1989 ◽  
Vol 209 ◽  
pp. 521-542 ◽  
Author(s):  
Donald L. Koch ◽  
Eric S. G. Shaqfeh

It is shown that hydrodynamic interactions between non-Brownian, non-spherical, sedimenting particles give rise to an increase in the number of neighbouring particles in the vicinity of any given particle. This result suggests that the suspension is unstable to particle density fluctuations even in the absence of inertia; a linear stability analysis confirms this inference. It is argued that the instability will lead to convection on a lengthscale (nl)−½, where l is a characteristic particle length and n is the particle number density. Sedimenting suspensions of spherical particles are shown to be stable in the absence of inertial effects.


2014 ◽  
Vol 748 ◽  
pp. 328-349
Author(s):  
Krzysztof A. Mizerski

AbstractThe problem of Brownian flocculation of spherical particles in strong shearing flow without hydrodynamic interactions is studied in detail using the singular perturbation method. All other types of interparticle interactions, such as van der Waals or Lennard-Jones forces, are also ignored. In the limit of strong external flow, the strength of which is measured by the Péclet number ($Pe\gg 1$), a complicated boundary layer structure for the pair probability density function ($P_{2}$) is identified and the complete stationary spatial distribution of $P_{2}(\boldsymbol {x})$ in the domain is found. The results, in particular the total mass flux in the accumulation process, are compared qualitatively and quantitatively with the case where the spheres interact hydrodynamically and it is demonstrated that the hydrodynamic interactions tend to decrease the rate of flocculation. An explicit simple formula for the flocculation rate for a general form of hydrodynamic interactions is provided. The limit of small Péclet number is also discussed to confirm the conclusion on the detrimental influence of hydrodynamic interactions on the rate of Brownian flocculation in shearing flow.


1996 ◽  
Vol 312 ◽  
pp. 223-252 ◽  
Author(s):  
Jeffrey F. Morris ◽  
John F. Brady

Self-diffusion in a suspension of spherical particles in steady linear shear flow is investigated by following the time evolution of the correlation of number density fluctuations. Expressions are presented for the evaluation of the self-diffusivity in a suspension which is either raacroscopically quiescent or in linear flow at arbitrary Peclet number $Pe = \dot{\gamma}a^2/2D$, where $\dot{\gamma}$ is the shear rate, a is the particle radius, and D = kBT/6πa is the diffusion coefficient of an isolated particle. Here, kB is Boltzmann's constant, T is the absolute temperature, and η is the viscosity of the suspending fluid. The short-time self-diffusion tensor is given by kBT times the microstructural average of the hydrodynamic mobility of a particle, and depends on the volume fraction $\phi = \frac{4}{3}\pi a^3n$ and Pe only when hydrodynamic interactions are considered. As a tagged particle moves through the suspension, it perturbs the average microstructure, and the long-time self-diffusion tensor, D∞s, is given by the sum of D0s and the correlation of the flux of a tagged particle with this perturbation. In a flowing suspension both D0s and D∞ are anisotropic, in general, with the anisotropy of D0s due solely to that of the steady microstructure. The influence of flow upon D∞s is more involved, having three parts: the first is due to the non-equilibrium microstructure, the second is due to the perturbation to the microstructure caused by the motion of a tagged particle, and the third is by providing a mechanism for diffusion that is absent in a quiescent suspension through correlation of hydrodynamic velocity fluctuations.The self-diffusivity in a simply sheared suspension of identical hard spheres is determined to O(øPe3/2) for Pe ≤ 1 and ø ≤ 1, both with and without hydro-dynamic interactions between the particles. The leading dependence upon flow of D0s is 0.22DøPeÊ, where Ê is the rate-of-strain tensor made dimensionless with $\dot{\gamma}$. Regardless of whether or not the particles interact hydrodynamically, flow influences D∞s at O(øPe) and O(øPe3/2). In the absence of hydrodynamics, the leading correction is proportional to øPeDÊ. The correction of O(øPe3/2), which results from a singular advection-diffusion problem, is proportional, in the absence of hydrodynamic interactions, to øPe3/2DI; when hydrodynamics are included, the correction is given by two terms, one proportional to Ê, and the second a non-isotropic tensor.At high ø a scaling theory based on the approach of Brady (1994) is used to approximate D∞s. For weak flows the long-time self-diffusivity factors into the product of the long-time self-diffusivity in the absence of flow and a non-dimensional function of $\bar{P}e = \dot{\gamma}a^2/2D^s_0(\phi)$. At small $\bar{P}e$ the dependence on $\bar{P}e$ is the same as at low ø.


1998 ◽  
Vol 371 ◽  
pp. 59-79 ◽  
Author(s):  
EHUD GAVZE ◽  
MICHAEL SHAPIRO

Trajectories of inertial spheroidal particles moving in a shear flow near a solid wall are calculated numerically from the Stokes flow equations by computing the hydrodynamic forces and torques acting on the particles. Near the wall these interactions cause coupling between the particle's rotational and translational motions. Due to this coupling an inertial spheroid is shown to move along an oscillatory trajectory, while simultaneously drifting towards the wall. This phenomenon occurs in the absence of gravity as a combined effect of three factors: particle non-spherical shape, its inertia and particle–wall hydrodynamic interactions. This drift is absent for inertialess spheroids, and also for inertial spherical particles which move along flow streamlines.The drift velocity is calculated for various particle aspect ratios γ and relaxation times τ. An approximate solution, valid for small particle inertia is developed, which allows the contribution of various terms to the drift velocity to be elucidated. It was found that the maximum value of the drift velocity prevails for N(γ)γ2τs∼4, where s is the shear rate and N(γ) is a decreasing function of γ, related to the particle–wall hydrodynamic interactions. In the limiting cases of large and small inertia and also of very long and thin spheroids, the drift vanishes.Possible applications of the results are discussed in the context of transport of micrometre particles in microgravity conditions. It is shown that the model used is applicable for analysis of the deposition of aerosol particles with sizes above 10 μm inhaled in the human respiratory tract in the absence of gravity.


2006 ◽  
Vol 18 (5) ◽  
pp. 053301 ◽  
Author(s):  
S. Bhattacharya ◽  
J. Bławzdziewicz ◽  
E. Wajnryb

Sign in / Sign up

Export Citation Format

Share Document